These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 24798302)
1. Efficient generation human induced pluripotent stem cells from human somatic cells with Sendai-virus. Choi IY; Lim H; Lee G J Vis Exp; 2014 Apr; (86):. PubMed ID: 24798302 [TBL] [Abstract][Full Text] [Related]
2. Efficient Generation of Non-Integration and Feeder-Free Induced Pluripotent Stem Cells from Human Peripheral Blood Cells by Sendai Virus. Ye H; Wang Q Cell Physiol Biochem; 2018; 50(4):1318-1331. PubMed ID: 30355953 [TBL] [Abstract][Full Text] [Related]
4. Derivation of Human-Induced Pluripotent Stem Cells in Chemically Defined Medium. Chen G; Rao M Methods Mol Biol; 2017; 1590():131-137. PubMed ID: 28353266 [TBL] [Abstract][Full Text] [Related]
5. An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Borgohain MP; Haridhasapavalan KK; Dey C; Adhikari P; Thummer RP Stem Cell Rev Rep; 2019 Apr; 15(2):286-313. PubMed ID: 30417242 [TBL] [Abstract][Full Text] [Related]
6. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells. Trevisan M; Desole G; Costanzi G; Lavezzo E; Palù G; Barzon L Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117672 [TBL] [Abstract][Full Text] [Related]
7. Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. Ono M; Hamada Y; Horiuchi Y; Matsuo-Takasaki M; Imoto Y; Satomi K; Arinami T; Hasegawa M; Fujioka T; Nakamura Y; Noguchi E PLoS One; 2012; 7(8):e42855. PubMed ID: 22912751 [TBL] [Abstract][Full Text] [Related]
8. Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Kudva YC; Ohmine S; Greder LV; Dutton JR; Armstrong A; De Lamo JG; Khan YK; Thatava T; Hasegawa M; Fusaki N; Slack JM; Ikeda Y Stem Cells Transl Med; 2012 Jun; 1(6):451-61. PubMed ID: 23197849 [TBL] [Abstract][Full Text] [Related]
9. Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Ban H; Nishishita N; Fusaki N; Tabata T; Saeki K; Shikamura M; Takada N; Inoue M; Hasegawa M; Kawamata S; Nishikawa S Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14234-9. PubMed ID: 21821793 [TBL] [Abstract][Full Text] [Related]
10. Generation of Integration-free Human Induced Pluripotent Stem Cells Using Hair-derived Keratinocytes. Hung SS; Pébay A; Wong RC J Vis Exp; 2015 Aug; (102):e53174. PubMed ID: 26327431 [TBL] [Abstract][Full Text] [Related]
11. Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors. Ye L; Muench MO; Fusaki N; Beyer AI; Wang J; Qi Z; Yu J; Kan YW Stem Cells Transl Med; 2013 Aug; 2(8):558-66. PubMed ID: 23847002 [TBL] [Abstract][Full Text] [Related]
12. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Hu K; Yu J; Suknuntha K; Tian S; Montgomery K; Choi KD; Stewart R; Thomson JA; Slukvin II Blood; 2011 Apr; 117(14):e109-19. PubMed ID: 21296996 [TBL] [Abstract][Full Text] [Related]
13. Reprogramming of Primary Human Cells to Induced Pluripotent Stem Cells Using Sendai Virus. Draper JM; Vivian JL Methods Mol Biol; 2020; 2066():217-234. PubMed ID: 31512220 [TBL] [Abstract][Full Text] [Related]
14. Simple and effective generation of transgene-free induced pluripotent stem cells using an auto-erasable Sendai virus vector responding to microRNA-302. Nishimura K; Ohtaka M; Takada H; Kurisaki A; Tran NVK; Tran YTH; Hisatake K; Sano M; Nakanishi M Stem Cell Res; 2017 Aug; 23():13-19. PubMed ID: 28666145 [TBL] [Abstract][Full Text] [Related]
15. Improved Sendai viral system for reprogramming to naive pluripotency. Kunitomi A; Hirohata R; Arreola V; Osawa M; Kato TM; Nomura M; Kawaguchi J; Hara H; Kusano K; Takashima Y; Takahashi K; Fukuda K; Takasu N; Yamanaka S Cell Rep Methods; 2022 Nov; 2(11):100317. PubMed ID: 36447645 [TBL] [Abstract][Full Text] [Related]
16. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Haridhasapavalan KK; Borgohain MP; Dey C; Saha B; Narayan G; Kumar S; Thummer RP Gene; 2019 Feb; 686():146-159. PubMed ID: 30472380 [TBL] [Abstract][Full Text] [Related]
17. Survival and differentiation of adenovirus-generated induced pluripotent stem cells transplanted into the rat striatum. Fink KD; Rossignol J; Lu M; Lévêque X; Hulse TD; Crane AT; Nerriere-Daguin V; Wyse RD; Starski PA; Schloop MT; Dues DJ; Witte SJ; Song C; Vallier L; Nguyen TH; Naveilhan P; Anegon I; Lescaudron L; Dunbar GL Cell Transplant; 2014; 23(11):1407-23. PubMed ID: 23879897 [TBL] [Abstract][Full Text] [Related]
18. Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood. Gu H; Huang X; Xu J; Song L; Liu S; Zhang XB; Yuan W; Li Y Stem Cell Res Ther; 2018 Jun; 9(1):163. PubMed ID: 29907164 [TBL] [Abstract][Full Text] [Related]
19. A Comparative View on Easy to Deploy non-Integrating Methods for Patient-Specific iPSC Production. Manzini S; Viiri LE; Marttila S; Aalto-Setälä K Stem Cell Rev Rep; 2015 Dec; 11(6):900-8. PubMed ID: 26341105 [TBL] [Abstract][Full Text] [Related]
20. Measles vector as a multigene delivery platform facilitating iPSC reprogramming. Wang Q; Vossen A; Ikeda Y; Devaux P Gene Ther; 2019 May; 26(5):151-164. PubMed ID: 30718755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]