BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24799522)

  • 1. Identification of campath-1 (CD52) as novel drug target in neoplastic stem cells in 5q-patients with MDS and AML.
    Blatt K; Herrmann H; Hoermann G; Willmann M; Cerny-Reiterer S; Sadovnik I; Herndlhofer S; Streubel B; Rabitsch W; Sperr WR; Mayerhofer M; Rülicke T; Valent P
    Clin Cancer Res; 2014 Jul; 20(13):3589-602. PubMed ID: 24799522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes.
    Fang J; Liu X; Bolanos L; Barker B; Rigolino C; Cortelezzi A; Oliva EN; Cuzzola M; Grimes HL; Fontanillo C; Komurov K; MacBeth K; Starczynowski DT
    Nat Med; 2016 Jul; 22(7):727-34. PubMed ID: 27294874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship of differential gene expression profiles in CD34+ myelodysplastic syndrome marrow cells to disease subtype and progression.
    Sridhar K; Ross DT; Tibshirani R; Butte AJ; Greenberg PL
    Blood; 2009 Nov; 114(23):4847-58. PubMed ID: 19801443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinicopathological characteristics of myelodysplastic syndromes with del(5q) in Taiwan.
    Yang CF; Hsu CY; Hsiao LT; Chen SW; Chuang SS
    Malays J Pathol; 2023 Dec; 45(3):405-416. PubMed ID: 38155382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of p53 provides a competitive advantage to del(5q) myelodysplastic syndrome hematopoietic stem cells during inflammation.
    Muto T; Walker CS; Agarwal P; Vick E; Sampson A; Choi K; Niederkorn M; Ishikawa C; Hueneman K; Varney M; Starczynowski DT
    Haematologica; 2023 Oct; 108(10):2715-2729. PubMed ID: 37102608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment.
    Mian SA; Rouault-Pierre K; Smith AE; Seidl T; Pizzitola I; Kizilors A; Kulasekararaj AG; Bonnet D; Mufti GJ
    Nat Commun; 2015 Dec; 6():10004. PubMed ID: 26643973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of acute myeloid leukemia and myelodysplastic syndromes with TP53 aberrations.
    Dutta S; Moritz J; Pregartner G; Thallinger GG; Brandstätter I; Lind K; Rezania S; Lyssy F; Reinisch A; Zebisch A; Berghold A; Wölfler A; Sill H
    Ann Hematol; 2022 Apr; 101(4):837-846. PubMed ID: 35083527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linking GATA2 to myeloid dysplasia and complex cytogenetics in adult myelodysplastic neoplasm and acute myeloid leukemia.
    Robbins DJ; Pavletich TS; Patil AT; Pahopos D; Lasarev M; Polaki US; Gahvari ZJ; Bresnick EH; Matson DR
    Blood Adv; 2024 Jan; 8(1):80-92. PubMed ID: 38029365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathophysiologic and clinical implications of molecular profiles resultant from deletion 5q.
    Adema V; Palomo L; Walter W; Mallo M; Hutter S; La Framboise T; Arenillas L; Meggendorfer M; Radivoyevitch T; Xicoy B; Pellagatti A; Haferlach C; Boultwood J; Kern W; Visconte V; Sekeres M; Barnard J; Haferlach T; Solé F; Maciejewski JP
    EBioMedicine; 2022 Jun; 80():104059. PubMed ID: 35617825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of a Novel Anti-CD52 Antibody with Improved Efficacy and Reduced Immunogenicity.
    Holgate RG; Weldon R; Jones TD; Baker MP
    PLoS One; 2015; 10(9):e0138123. PubMed ID: 26372145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preclinical modeling of myelodysplastic syndromes.
    Rouault-Pierre K; Mian SA; Goulard M; Abarrategi A; Di Tulio A; Smith AE; Mohamedali A; Best S; Nloga AM; Kulasekararaj AG; Ades L; Chomienne C; Fenaux P; Dosquet C; Mufti GJ; Bonnet D
    Leukemia; 2017 Dec; 31(12):2702-2708. PubMed ID: 28663577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vemurafenib induces senescence in acute myeloid leukemia and myelodysplastic syndrome by activating the HIPPO signaling pathway: implications for potential targeted therapy.
    Zhou Q; Zhang J; Zhang J; Liang S; Cai D; Xiao H; Zhu Y; Xiang W; Rodrigues-Lima F; Chi J; Guidez F; Wang L
    Biol Direct; 2024 Jan; 19(1):6. PubMed ID: 38178263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CADM1 tumor suppressor gene is a major candidate gene in MDS with deletion of the long arm of chromosome 11.
    Lafage-Pochitaloff M; Gerby B; Baccini V; Largeaud L; Fregona V; Prade N; Juvin PY; Jamrog L; Bories P; Hébrard S; Lagarde S; Mansat-De Mas V; Dovey OM; Yusa K; Vassiliou GS; Jansen JH; Tekath T; Rombaut D; Ameye G; Barin C; Bidet A; Boudjarane J; Collonge-Rame MA; Gervais C; Ittel A; Lefebvre C; Luquet I; Michaux L; Nadal N; Poirel HA; Radford-Weiss I; Ribourtout B; Richebourg S; Struski S; Terré C; Tigaud I; Penther D; Eclache V; Fontenay M; Broccardo C; Delabesse E
    Blood Adv; 2022 Jan; 6(2):386-398. PubMed ID: 34638130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clonal MDS/AML cells with enhanced TWIST1 expression reprogram the differentiation of bone marrow MSCs.
    Li H; Wang Y; Yang F; Feng S; Chang K; Yu X; Guan F; Li X
    Redox Biol; 2023 Nov; 67():102900. PubMed ID: 37748319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collaborative effect of Csnk1a1 haploinsufficiency and mutant p53 in Myc induction can promote leukemic transformation.
    Fuchs SNR; Stalmann USA; Snoeren IAM; Bindels E; Schmitz S; Banjanin B; Hoogenboezem RM; van Herk S; Saad M; Walter W; Haferlach T; Seillier L; Saez-Rodriguez J; Dugourd AJF; Lehmann KV; Ben-Neriah Y; Gleitz HFE; Schneider RK
    Blood Adv; 2024 Feb; 8(3):766-779. PubMed ID: 38147624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DELE1 haploinsufficiency causes resistance to mitochondrial stress-induced apoptosis in monosomy 5/del(5q) AML.
    Spinella JF; Chagraoui J; Moison C; Lavallée VP; Boivin I; Gracias D; Lavallée S; Carpentier GR; Beliveau F; Hébert J; Sauvageau G
    Leukemia; 2024 Mar; 38(3):530-537. PubMed ID: 38102204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unlocking the Potential of Artificial Intelligence in Acute Myeloid Leukemia and Myelodysplastic Syndromes.
    Alhajahjeh A; Nazha A
    Curr Hematol Malig Rep; 2024 Feb; 19(1):9-17. PubMed ID: 37999872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic Value of CD34 and CD117 Immunohistochemistry and Megakaryocyte Morphology in Myelodysplastic Syndromes: A Retrospective Case-control Study.
    Zhang Y; Li W; Liang Y; Liu Y; Dai W
    Appl Immunohistochem Mol Morphol; 2024 Mar; 32(3):125-129. PubMed ID: 38053414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paralog-specific signaling by IRAK1/4 maintains MyD88-independent functions in MDS/AML.
    Bennett J; Ishikawa C; Agarwal P; Yeung J; Sampson A; Uible E; Vick E; Bolanos LC; Hueneman K; Wunderlich M; Kolt A; Choi K; Volk A; Greis KD; Rosenbaum J; Hoyt SB; Thomas CJ; Starczynowski DT
    Blood; 2023 Sep; 142(11):989-1007. PubMed ID: 37172199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IRAK1: oncotarget in MDS and AML.
    Beverly LJ; Starczynowski DT
    Oncotarget; 2014 Apr; 5(7):1699-700. PubMed ID: 24880611
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.