These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24799672)

  • 61. The phi 80 and P22 attachment sites. Primary structure and interaction with Escherichia coli integration host factor.
    Leong JM; Nunes-Düby S; Lesser CF; Youderian P; Susskind MM; Landy A
    J Biol Chem; 1985 Apr; 260(7):4468-77. PubMed ID: 2984205
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.
    Thomason LC; Costantino N; Court DL
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624131
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phage λ--new insights into regulatory circuits.
    Węgrzyn G; Licznerska K; Węgrzyn A
    Adv Virus Res; 2012; 82():155-78. PubMed ID: 22420854
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Integration specificities of two lambdoid phages (21 and e14) that insert at the same attB site.
    Wang H; Yang CH; Lee G; Chang F; Wilson H; del Campillo-Campbell A; Campbell A
    J Bacteriol; 1997 Sep; 179(18):5705-11. PubMed ID: 9294425
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Recombination-dependent DNA replication stimulated by double-strand breaks in bacteriophage T4.
    Kreuzer KN; Saunders M; Weislo LJ; Kreuzer HW
    J Bacteriol; 1995 Dec; 177(23):6844-53. PubMed ID: 7592477
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Studies on Escherichia coli HflKC suggest the presence of an unidentified λ factor that influences the lysis-lysogeny switch.
    Bandyopadhyay K; Parua PK; Datta AB; Parrack P
    BMC Microbiol; 2011 Feb; 11():34. PubMed ID: 21324212
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Transducing lambda phages with Escherichia coli genes].
    Mindlin SZ; Kovalev IuN
    Genetika; 1981; 17(8):1351-89. PubMed ID: 6456172
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Analysis of lambda insertions in the fucose utilization region of Escherichia coli K-12: use of lambda fuc and lambda argA transducing bacteriophages to partially order the fucose utilization genes.
    Skjold AC; Ezekiel DH
    J Bacteriol; 1982 Oct; 152(1):120-5. PubMed ID: 6214544
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synaptic intermediates in bacteriophage lambda site-specific recombination: integrase can align pairs of attachment sites.
    Segall AM; Nash HA
    EMBO J; 1993 Dec; 12(12):4567-76. PubMed ID: 8223466
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural studies of lambda transducing bacteriophage carrying bacterial deoxyribonucleic acid from the metBJLF region of the Escherichia coli chromosome.
    Krueger JH; Johnson JR; Greene RC; Dresser M
    J Bacteriol; 1981 Aug; 147(2):612-21. PubMed ID: 6267016
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Interaction of the lambda site-specific recombination protein Xis with attachment site DNA.
    Yin S; Bushman W; Landy A
    Proc Natl Acad Sci U S A; 1985 Feb; 82(4):1040-4. PubMed ID: 3156374
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bacteriophage P1 site-specific recombination. II. Recombination between loxP and the bacterial chromosome.
    Sternberg N; Hamilton D; Hoess R
    J Mol Biol; 1981 Aug; 150(4):487-507. PubMed ID: 6276558
    [No Abstract]   [Full Text] [Related]  

  • 73. Determinants of directionality in lambda site-specific recombination.
    Bushman W; Yin S; Thio LL; Landy A
    Cell; 1984 Dec; 39(3 Pt 2):699-706. PubMed ID: 6239693
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pseudovirulent mutants of lambda b221poriCasnA resulting from mutations in or near oriC, the E. coli origin of DNA replication.
    Soll L
    Mol Gen Genet; 1980; 178(2):391-6. PubMed ID: 6446650
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A genetic study of Escherichia coli strains carrying Mu-lambda-Mu structures.
    Piruzian ES; Koretskaya NG
    Mol Gen Genet; 1983; 190(1):133-8. PubMed ID: 6222245
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nucleoprotein architectures regulating the directionality of viral integration and excision.
    Seah NE; Warren D; Tong W; Laxmikanthan G; Van Duyne GD; Landy A
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12372-7. PubMed ID: 25114241
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The role of lambda integrase in integration and excision.
    Enquist LW; Kikuchi A; Weisberg RA
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1115-20. PubMed ID: 158464
    [No Abstract]   [Full Text] [Related]  

  • 78. Integration and excision of prophage lambda mediated by the IS 1 element.
    Shapiro JA; MacHattie LA
    Cold Spring Harb Symp Quant Biol; 1979; 43 Pt 2():1135-42. PubMed ID: 158467
    [No Abstract]   [Full Text] [Related]  

  • 79. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA).
    Kihara A; Akiyama Y; Ito K
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5544-9. PubMed ID: 9159109
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The DNA between Rz and cosR in bacteriophage lambda is nonessential.
    Hernandez VJ; Edlind TD; Young RF; Ihler GM
    Gene; 1985; 33(3):363-5. PubMed ID: 2989098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.