BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24800960)

  • 21. Size controllable one step synthesis of gold nanoparticles using carboxymethyl chitosan.
    Sun L; Pu S; Li J; Cai J; Zhou B; Ren G; Ma Q; Zhong L
    Int J Biol Macromol; 2019 Feb; 122():770-783. PubMed ID: 30399380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile synthesis of gold octahedra by direct reduction of HAuCl4 in an aqueous solution.
    Li W; Xia Y
    Chem Asian J; 2010 Jun; 5(6):1312-6. PubMed ID: 20376878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization Studies of Conditions for Biological Synthesis of AuNPs in Various Shapes Using Plant Extract (Ocimum sanctum).
    Sneha K; Yn LS; Yeoung-Sang Y
    J Nanosci Nanotechnol; 2015 Jan; 15(1):326-9. PubMed ID: 26328353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA-templated gold nanoparticles formation.
    Sun L; Song Y; Wang L; Sun Y; Guo C; Liu Z; Li Z
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4415-23. PubMed ID: 19049035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction.
    Liu X; Xu H; Xia H; Wang D
    Langmuir; 2012 Sep; 28(38):13720-6. PubMed ID: 22954316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava.
    Venkatesan J; Manivasagan P; Kim SK; Kirthi AV; Marimuthu S; Rahuman AA
    Bioprocess Biosyst Eng; 2014 Aug; 37(8):1591-7. PubMed ID: 24525832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Banana peel extract mediated synthesis of gold nanoparticles.
    Bankar A; Joshi B; Kumar AR; Zinjarde S
    Colloids Surf B Biointerfaces; 2010 Oct; 80(1):45-50. PubMed ID: 20620890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proof-of-principle for SERS imaging of Aspergillus nidulans hyphae using in vivo synthesis of gold nanoparticles.
    Prusinkiewicz MA; Farazkhorasani F; Dynes JJ; Wang J; Gough KM; Kaminskyj SG
    Analyst; 2012 Nov; 137(21):4934-42. PubMed ID: 22900260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly stable positively charged dendron-encapsulated gold nanoparticles.
    Cho TJ; MacCuspie RI; Gigault J; Gorham JM; Elliott JT; Hackley VA
    Langmuir; 2014 Apr; 30(13):3883-93. PubMed ID: 24625049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial synthesis of multishaped gold nanostructures.
    Das SK; Das AR; Guha AK
    Small; 2010 May; 6(9):1012-21. PubMed ID: 20376859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.
    Klekotko M; Matczyszyn K; Siednienko J; Olesiak-Banska J; Pawlik K; Samoc M
    Phys Chem Chem Phys; 2015 Nov; 17(43):29014-9. PubMed ID: 26456245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of gold nanopeanuts by citrate reduction of gold chloride on gold-silver core-shell nanoparticles.
    Xie W; Su L; Donfack P; Shen A; Zhou X; Sackmann M; Materny A; Hu J
    Chem Commun (Camb); 2009 Sep; (35):5263-5. PubMed ID: 19707640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of L-phenylalanine stabilized gold nanoparticles and their thermal stability.
    Nayak NC; Shin K
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3512-6. PubMed ID: 17252801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel polyhedral gold nanoparticles: green synthesis, optimization and characterization by environmental isolate of Acinetobacter sp. SW30.
    Wadhwani SA; Shedbalkar UU; Singh R; Karve MS; Chopade BA
    World J Microbiol Biotechnol; 2014 Oct; 30(10):2723-31. PubMed ID: 24980944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One step synthesis of gold-loaded radial mesoporous silica nanospheres and supported lipid bilayer functionalization: towards bio-multifunctional sensors.
    Veneziano R; Derrien G; Tan S; Brisson A; Devoisselle JM; Chopineau J; Charnay C
    Small; 2012 Dec; 8(23):3674-82. PubMed ID: 22969002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.
    Dhanasekar NN; Rahul GR; Narayanan KB; Raman G; Sakthivel N
    J Microbiol Biotechnol; 2015 Jul; 25(7):1129-35. PubMed ID: 25737119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH induced protein-scaffold biosynthesis of tunable shape gold nanoparticles.
    Zhang X; He X; Wang K; Ren F; Qin Z
    Nanotechnology; 2011 Sep; 22(35):355603. PubMed ID: 21828895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Auxin synthesis by the higher fungus Lentinus edodes (Berk.) Sing in the presence of low concentrations of indole compounds].
    Tsivileva OM; Loshchinina EA; Makarov OE; Nikitina VE
    Prikl Biokhim Mikrobiol; 2012; 48(3):313-22. PubMed ID: 22834303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Relationship between the molecular structure of nitrogen source and the activity of the extracellular lectins of Lentinus edodes (Berk.) Sing [Lentinula edodes (Berk.) Pegler] upon submerged cultivation].
    Tsivileva OM; Pankratov AN; Nikitina VE; Garibova LV
    Mikrobiologiia; 2004; 73(4):486-90. PubMed ID: 15521174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.