These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 24801114)

  • 1. Spider genomes provide insight into composition and evolution of venom and silk.
    Sanggaard KW; Bechsgaard JS; Fang X; Duan J; Dyrlund TF; Gupta V; Jiang X; Cheng L; Fan D; Feng Y; Han L; Huang Z; Wu Z; Liao L; Settepani V; Thøgersen IB; Vanthournout B; Wang T; Zhu Y; Funch P; Enghild JJ; Schauser L; Andersen SU; Villesen P; Schierup MH; Bilde T; Wang J
    Nat Commun; 2014 May; 5():3765. PubMed ID: 24801114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of transcriptomes of three orb-web spider species reveals gene profiles involved in silk and toxin.
    Zhao YJ; Zeng Y; Chen L; Dong Y; Wang W
    Insect Sci; 2014 Dec; 21(6):687-98. PubMed ID: 24167122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and transcriptomic analyses support a silk gland origin of spider venom glands.
    Zhu B; Jin P; Zhang Y; Shen Y; Wang W; Li S
    BMC Biol; 2023 Apr; 21(1):82. PubMed ID: 37055766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal-level genome of a sheet-web spider provides insight into the composition and evolution of venom.
    Zhu B; Jin P; Hou Z; Li J; Wei S; Li S
    Mol Ecol Resour; 2022 Aug; 22(6):2333-2348. PubMed ID: 35182027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The deep-rooted origin of disulfide-rich spider venom toxins.
    Shaikh NY; Sunagar K
    Elife; 2023 Feb; 12():. PubMed ID: 36757362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. House spider genome uncovers evolutionary shifts in the diversity and expression of black widow venom proteins associated with extreme toxicity.
    Gendreau KL; Haney RA; Schwager EE; Wierschin T; Stanke M; Richards S; Garb JE
    BMC Genomics; 2017 Feb; 18(1):178. PubMed ID: 28209133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A trade-off in evolution: the adaptive landscape of spiders without venom glands.
    Zhang Y; Shen Y; Jin P; Zhu B; Lin Y; Jiang T; Huang X; Wang Y; Zhao Z; Li S
    Gigascience; 2024 Jan; 13():. PubMed ID: 39101784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.
    Hayashi CY; Blackledge TA; Lewis RV
    Mol Biol Evol; 2004 Oct; 21(10):1950-9. PubMed ID: 15240839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes and evolution of two-domain toxins from lynx spider venom.
    Sachkova MY; Slavokhotova AA; Grishin EV; Vassilevski AA
    FEBS Lett; 2014 Mar; 588(5):740-5. PubMed ID: 24462682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intragenic homogenization and multiple copies of prey-wrapping silk genes in Argiope garden spiders.
    Chaw RC; Zhao Y; Wei J; Ayoub NA; Allen R; Atrushi K; Hayashi CY
    BMC Evol Biol; 2014 Feb; 14():31. PubMed ID: 24552485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit.
    Clarke TH; Garb JE; Hayashi CY; Haney RA; Lancaster AK; Corbett S; Ayoub NA
    BMC Genomics; 2014 May; 15(1):365. PubMed ID: 24916340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders.
    Pineda SS; Sollod BL; Wilson D; Darling A; Sunagar K; Undheim EA; Kely L; Antunes A; Fry BG; King GF
    BMC Genomics; 2014 Mar; 15():177. PubMed ID: 24593665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis.
    Cheng TC; Long RW; Wu YQ; Guo YB; Liu DL; Peng L; Li DQ; Yang DW; Xu X; Liu FX; Xia QY
    Insect Sci; 2016 Jun; 23(3):487-99. PubMed ID: 26678257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruitment and diversification of an ecdysozoan family of neuropeptide hormones for black widow spider venom expression.
    McCowan C; Garb JE
    Gene; 2014 Feb; 536(2):366-75. PubMed ID: 24316130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteotranscriptomic Insights into the Venom Composition of the Wolf Spider
    Koua D; Mary R; Ebou A; Barrachina C; El Koulali K; Cazals G; Charnet P; Dutertre S
    Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32764230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of venom glands from a single fishing spider Dolomedes mizhoanus.
    Jiang L; Liu C; Duan Z; Deng M; Tang X; Liang S
    Toxicon; 2013 Oct; 73():23-32. PubMed ID: 23851222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From genome to proteome: Comprehensive identification of venom toxins from the Chinese funnel-web spider (Macrothelidae: Macrothele yani).
    You Y; Tang Y; Yin W; Liu X; Gao P; Zhang C; Tembrock LR; Zhao Y; Yang Z
    Int J Biol Macromol; 2024 May; 268(Pt 2):131780. PubMed ID: 38657926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae).
    Ayoub NA; Hayashi CY
    Mol Biol Evol; 2008 Feb; 25(2):277-86. PubMed ID: 18048404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of spider silk proteins: insight from phylogenetic analyses.
    Hayashi CY
    EXS; 2002; (92):209-23. PubMed ID: 11924498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis.
    He Q; Duan Z; Yu Y; Liu Z; Liu Z; Liang S
    PLoS One; 2013; 8(11):e81357. PubMed ID: 24312294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.