These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 24801195)
1. Accessing new chemical entities through microfluidic systems. Rodrigues T; Schneider P; Schneider G Angew Chem Int Ed Engl; 2014 Jun; 53(23):5750-8. PubMed ID: 24801195 [TBL] [Abstract][Full Text] [Related]
2. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. Mirasoli M; Guardigli M; Michelini E; Roda A J Pharm Biomed Anal; 2014 Jan; 87():36-52. PubMed ID: 24268500 [TBL] [Abstract][Full Text] [Related]
3. The past, present and potential for microfluidic reactor technology in chemical synthesis. Elvira KS; Casadevall i Solvas X; Wootton RC; deMello AJ Nat Chem; 2013 Nov; 5(11):905-15. PubMed ID: 24153367 [TBL] [Abstract][Full Text] [Related]
4. Lab-on-a-chip: microfluidics in drug discovery. Dittrich PS; Manz A Nat Rev Drug Discov; 2006 Mar; 5(3):210-8. PubMed ID: 16518374 [TBL] [Abstract][Full Text] [Related]
5. Advances in microfluidics for drug discovery. Lombardi D; Dittrich PS Expert Opin Drug Discov; 2010 Nov; 5(11):1081-94. PubMed ID: 22827746 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Daniele MA; Boyd DA; Adams AA; Ligler FS Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649 [TBL] [Abstract][Full Text] [Related]
7. Microreactors for peptide synthesis: looking through the eyes of twenty first century !!! Ramesh S; Cherkupally P; de la Torre BG; Govender T; Kruger HG; Albericio F Amino Acids; 2014 Sep; 46(9):2091-104. PubMed ID: 24961648 [TBL] [Abstract][Full Text] [Related]
8. Applications of micromixing technology. Jeong GS; Chung S; Kim CB; Lee SH Analyst; 2010 Mar; 135(3):460-73. PubMed ID: 20174696 [TBL] [Abstract][Full Text] [Related]
9. The application of microfluidics in biology. Holmes D; Gawad S Methods Mol Biol; 2010; 583():55-80. PubMed ID: 19763459 [TBL] [Abstract][Full Text] [Related]
10. Continuous separation of cells and particles in microfluidic systems. Lenshof A; Laurell T Chem Soc Rev; 2010 Mar; 39(3):1203-17. PubMed ID: 20179832 [TBL] [Abstract][Full Text] [Related]
11. Micro-optics for microfluidic analytical applications. Yang H; Gijs MAM Chem Soc Rev; 2018 Feb; 47(4):1391-1458. PubMed ID: 29308474 [TBL] [Abstract][Full Text] [Related]
16. Continuous and segmented flow microfluidics: applications in high-throughput chemistry and biology. Stanley CE; Wootton RC; deMello AJ Chimia (Aarau); 2012; 66(3):88-98. PubMed ID: 22546251 [TBL] [Abstract][Full Text] [Related]
17. PCR microfluidic devices for DNA amplification. Zhang C; Xu J; Ma W; Zheng W Biotechnol Adv; 2006; 24(3):243-84. PubMed ID: 16326063 [TBL] [Abstract][Full Text] [Related]
18. Microfluidics in the "open space" for performing localized chemistry on biological interfaces. Kaigala GV; Lovchik RD; Delamarche E Angew Chem Int Ed Engl; 2012 Nov; 51(45):11224-40. PubMed ID: 23111955 [TBL] [Abstract][Full Text] [Related]
19. Droplet-based microfluidics: enabling impact on drug discovery. Dressler OJ; Maceiczyk RM; Chang SI; deMello AJ J Biomol Screen; 2014 Apr; 19(4):483-96. PubMed ID: 24241711 [TBL] [Abstract][Full Text] [Related]