These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 24801195)

  • 21. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Successes and future outlook for microfluidics-based cardiovascular drug discovery.
    Skommer J; Wlodkowic D
    Expert Opin Drug Discov; 2015 Mar; 10(3):231-44. PubMed ID: 25672221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic chemical analysis systems.
    Livak-Dahl E; Sinn I; Burns M
    Annu Rev Chem Biomol Eng; 2011; 2():325-53. PubMed ID: 22432622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in microfluidic technologies for biochemistry and molecular biologys.
    Cho S; Kang DK; Choo J; de Mello AJ; Chang SI
    BMB Rep; 2011 Nov; 44(11):705-12. PubMed ID: 22118535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent developments in microfluidic large scale integration.
    Araci IE; Brisk P
    Curr Opin Biotechnol; 2014 Feb; 25():60-8. PubMed ID: 24484882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidics-based in vivo mimetic systems for the study of cellular biology.
    Kim D; Wu X; Young AT; Haynes CL
    Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration of microfluidics into the synthetic biology design flow.
    Huang H; Densmore D
    Lab Chip; 2014 Sep; 14(18):3459-74. PubMed ID: 25012162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological cells on microchips: new technologies and applications.
    Tanaka Y; Sato K; Shimizu T; Yamato M; Okano T; Kitamori T
    Biosens Bioelectron; 2007 Nov; 23(4):449-58. PubMed ID: 17881213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MEMS and microfluidics for diagnostics devices.
    Rosen Y; Gurman P
    Curr Pharm Biotechnol; 2010 Jun; 11(4):366-75. PubMed ID: 20199381
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dielectrophoretic platforms for bio-microfluidic systems.
    Khoshmanesh K; Nahavandi S; Baratchi S; Mitchell A; Kalantar-zadeh K
    Biosens Bioelectron; 2011 Jan; 26(5):1800-14. PubMed ID: 20933384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in microfluidics for environmental analysis.
    Jokerst JC; Emory JM; Henry CS
    Analyst; 2012 Jan; 137(1):24-34. PubMed ID: 22005445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lab-on-a-chip systems for cancer biomarker diagnosis.
    Özyurt C; Uludağ İ; İnce B; Sezgintürk MK
    J Pharm Biomed Anal; 2023 Mar; 226():115266. PubMed ID: 36706542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Next generation microfluidics: fulfilling the promise of lab-on-a-chip technologies.
    Gurkan UA; Wood DK; Carranza D; Herbertson LH; Diamond SL; Du E; Guha S; Di Paola J; Hines PC; Papautsky I; Shevkoplyas SS; Sniadecki NJ; Pamula VK; Sundd P; Rizwan A; Qasba P; Lam WA
    Lab Chip; 2024 Mar; 24(7):1867-1874. PubMed ID: 38487919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of microelectrodes for electrochemiluminescent detection in microfluidic devices.
    Fredrick SJ; Gross EM
    Bioanalysis; 2009 Apr; 1(1):31-6. PubMed ID: 21083185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.