These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24801556)

  • 61. Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence.
    Xie C; Wang J; Li K; Ma C
    Phys Rev E; 2019 May; 99(5-1):053113. PubMed ID: 31212521
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations.
    van Hooft JA; Popinet S; van Heerwaarden CC; van der Linden SJA; de Roode SR; van de Wiel BJH
    Boundary Layer Meteorol; 2018; 167(3):421-443. PubMed ID: 31258159
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of anisotropic turbulence behavior in pulsatile blood flow.
    Andersson M; Karlsson M
    Biomech Model Mechanobiol; 2021 Apr; 20(2):491-506. PubMed ID: 33090334
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Large eddy simulation of a stenosed artery using a femoral artery pulsatile flow profile.
    Barber TJ; Simmons A
    Artif Organs; 2011 Jul; 35(7):E155-60. PubMed ID: 21658078
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Numerical modeling of pulsatile turbulent flow in stenotic vessels.
    Varghese SS; Frankel SH
    J Biomech Eng; 2003 Aug; 125(4):445-60. PubMed ID: 12968569
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multiblock High Order Large Eddy Simulation of Powered Fontan Hemodynamics: Towards Computational Surgery.
    Delorme YT; Rodefeld MD; Frankel SH
    Comput Fluids; 2017 Jan; 143():16-31. PubMed ID: 28649147
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reorientations of the large-scale flow in turbulent convection in a cube.
    Foroozani N; Niemela JJ; Armenio V; Sreenivasan KR
    Phys Rev E; 2017 Mar; 95(3-1):033107. PubMed ID: 28415317
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of stenosis shape on the sound emitted from a constricted blood vessel.
    Ozden K; Sert C; Yazicioglu Y
    Med Biol Eng Comput; 2020 Mar; 58(3):643-658. PubMed ID: 31939056
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations.
    Kitsios V; Frederiksen JS; Zidikheri MJ
    Philos Trans A Math Phys Eng Sci; 2014 Jun; 372(2018):20130285. PubMed ID: 24842029
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neural networks for large eddy simulations of wall-bounded turbulence: numerical experiments and challenges.
    Benjamin M; Domino SP; Iaccarino G
    Eur Phys J E Soft Matter; 2023 Jul; 46(7):55. PubMed ID: 37458832
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Predictions of Conjugate Heat Transfer in Turbulent Channel Flow Using Advanced Wall-Modeled Large Eddy Simulation Techniques.
    Li Y; Ries F; Nishad K; Sadiki A
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34200494
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets.
    Cafiero G; Vassilicos JC
    Proc Math Phys Eng Sci; 2019 May; 475(2225):20190038. PubMed ID: 31236057
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Using parabolized stability equations to model boundary-layer transition in direct and large-eddy simulations.
    Lozano-Durán A; Hack MJP; Moin P
    48th AIAA Fluid Dyn Conf 2018 (2018); 2018 Jun; 2018():. PubMed ID: 33123700
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inertial range statistics of the entropic lattice Boltzmann method in three-dimensional turbulence.
    Buzzicotti M; Tauzin G
    Phys Rev E; 2021 Jul; 104(1-2):015302. PubMed ID: 34412200
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hybrid LES-RANS: back scatter from a scale-similarity model used as forcing.
    Davidson L
    Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2905-15. PubMed ID: 19531511
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Stochastic flow approach to model the mean velocity profile of wall-bounded flows.
    Pinier B; Mémin E; Laizet S; Lewandowski R
    Phys Rev E; 2019 Jun; 99(6-1):063101. PubMed ID: 31330641
    [TBL] [Abstract][Full Text] [Related]  

  • 77. SPH modelling of depth-limited turbulent open channel flows over rough boundaries.
    Kazemi E; Nichols A; Tait S; Shao S
    Int J Numer Methods Fluids; 2017 Jan; 83(1):3-27. PubMed ID: 28066121
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Toward an accurate estimation of wall shear stress from 4D flow magnetic resonance downstream of a severe stenosis.
    Corso P; Walheim J; Dillinger H; Giannakopoulos G; Gülan U; Frouzakis CE; Kozerke S; Holzner M
    Magn Reson Med; 2021 Sep; 86(3):1531-1543. PubMed ID: 33914962
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Computational modeling and validation of human nasal airflow under various breathing conditions.
    Li C; Jiang J; Dong H; Zhao K
    J Biomech; 2017 Nov; 64():59-68. PubMed ID: 28893392
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dependence of leukocyte capture on instantaneous pulsatile flow.
    Ciri U; Bhui R; Bailon-Cuba J; Hayenga HN; Leonardi S
    J Biomech; 2018 Jul; 76():84-93. PubMed ID: 29914741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.