These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24801819)

  • 1. PENDISC: a simple method for constructing a mathematical model from time-series data of metabolite concentrations.
    Sriyudthsak K; Iwata M; Hirai MY; Shiraishi F
    Bull Math Biol; 2014 Jun; 76(6):1333-51. PubMed ID: 24801819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of kinetic parameters in an S-system equation model for a metabolic reaction system using the Newton-Raphson method.
    Iwata M; Sriyudthsak K; Hirai MY; Shiraishi F
    Math Biosci; 2014 Feb; 248():11-21. PubMed ID: 24291302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new parametric method to smooth time-series data of metabolites in metabolic networks.
    Miyawaki A; Sriyudthsak K; Hirai MY; Shiraishi F
    Math Biosci; 2016 Dec; 282():21-33. PubMed ID: 27693302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a metabolic reaction network from time-series data of metabolite concentrations.
    Sriyudthsak K; Shiraishi F; Hirai MY
    PLoS One; 2013; 8(1):e51212. PubMed ID: 23326311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SS-mPMG and SS-GA: tools for finding pathways and dynamic simulation of metabolic networks.
    Katsuragi T; Ono N; Yasumoto K; Altaf-Ul-Amin M; Hirai MY; Sriyudthsak K; Sawada Y; Yamashita Y; Chiba Y; Onouchi H; Fujiwara T; Naito S; Shiraishi F; Kanaya S
    Plant Cell Physiol; 2013 May; 54(5):728-39. PubMed ID: 23574698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of an S-system root-finding method for estimating parameters in a metabolic reaction model.
    Iwata M; Miyawaki-Kuwakado A; Yoshida E; Komori S; Shiraishi F
    Math Biosci; 2018 Jul; 301():21-31. PubMed ID: 29410225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data.
    Sriyudthsak K; Shiraishi F; Hirai MY
    Front Mol Biosci; 2016; 3():15. PubMed ID: 27200361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DMPy: a Python package for automated mathematical model construction of large-scale metabolic systems.
    Smith RW; van Rosmalen RP; Martins Dos Santos VAP; Fleck C
    BMC Syst Biol; 2018 Jun; 12(1):72. PubMed ID: 29914475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing regulatory routes in metabolism using generalised supply-demand analysis.
    Christensen CD; Hofmeyr JH; Rohwer JM
    BMC Syst Biol; 2015 Dec; 9():89. PubMed ID: 26635009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter estimation of kinetic models from metabolic profiles: two-phase dynamic decoupling method.
    Jia G; Stephanopoulos GN; Gunawan R
    Bioinformatics; 2011 Jul; 27(14):1964-70. PubMed ID: 21558155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Promising Method for Calculating True Steady-State Metabolite Concentrations in Large-Scale Metabolic Reaction Network Models.
    Miyawaki-Kuwakado A; Komori S; Shiraishi F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):27-36. PubMed ID: 30004883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.
    Kiparissides A; Hatzimanikatis V
    Metab Eng; 2017 Jan; 39():117-127. PubMed ID: 27845184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics.
    Nikerel IE; van Winden WA; Verheijen PJ; Heijnen JJ
    Metab Eng; 2009 Jan; 11(1):20-30. PubMed ID: 18718548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new computational method to split large biochemical networks into coherent subnets.
    Verwoerd WS
    BMC Syst Biol; 2011 Feb; 5():25. PubMed ID: 21294924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kriging-Based Parameter Estimation Algorithm for Metabolic Networks Combined with Single-Dimensional Optimization and Dynamic Coordinate Perturbation.
    Wang H; Wang X; Li Z; Li K
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1142-1154. PubMed ID: 26661788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A metabolite-centric view on flux distributions in genome-scale metabolic models.
    Riemer SA; Rex R; Schomburg D
    BMC Syst Biol; 2013 Apr; 7():33. PubMed ID: 23587327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using metabolome data for mathematical modeling of plant metabolic systems.
    Hirai MY; Shiraishi F
    Curr Opin Biotechnol; 2018 Dec; 54():138-144. PubMed ID: 30195121
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.