These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24801819)

  • 21. High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions.
    Caldana C; Degenkolbe T; Cuadros-Inostroza A; Klie S; Sulpice R; Leisse A; Steinhauser D; Fernie AR; Willmitzer L; Hannah MA
    Plant J; 2011 Sep; 67(5):869-84. PubMed ID: 21575090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A genome-scale metabolic model of Arabidopsis and some of its properties.
    Poolman MG; Miguet L; Sweetlove LJ; Fell DA
    Plant Physiol; 2009 Nov; 151(3):1570-81. PubMed ID: 19755544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mathematical modeling of monolignol biosynthesis in Populus xylem.
    Lee Y; Voit EO
    Math Biosci; 2010 Nov; 228(1):78-89. PubMed ID: 20816867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coordinations between gene modules control the operation of plant amino acid metabolic networks.
    Less H; Galili G
    BMC Syst Biol; 2009 Jan; 3():14. PubMed ID: 19171064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Observability of Plant Metabolic Networks Is Reflected in the Correlation of Metabolic Profiles.
    Schwahn K; Küken A; Kliebenstein DJ; Fernie AR; Nikoloski Z
    Plant Physiol; 2016 Oct; 172(2):1324-1333. PubMed ID: 27566166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic construction of kinetic models from genome-scale metabolic networks.
    Stanford NJ; Lubitz T; Smallbone K; Klipp E; Mendes P; Liebermeister W
    PLoS One; 2013; 8(11):e79195. PubMed ID: 24324546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks.
    Saa PA; Nielsen LK
    Biotechnol Adv; 2017 Dec; 35(8):981-1003. PubMed ID: 28916392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parameter estimation of dynamic biological network models using integrated fluxes.
    Liu Y; Gunawan R
    BMC Syst Biol; 2014 Nov; 8():127. PubMed ID: 25403239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters.
    Curien G; Bastien O; Robert-Genthon M; Cornish-Bowden A; Cárdenas ML; Dumas R
    Mol Syst Biol; 2009; 5():271. PubMed ID: 19455135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variability of metabolite levels is linked to differential metabolic pathways in Arabidopsis's responses to abiotic stresses.
    Töpfer N; Scossa F; Fernie A; Nikoloski Z
    PLoS Comput Biol; 2014 Jun; 10(6):e1003656. PubMed ID: 24946036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizability of metabolic pathway systems from time series data.
    Voit EO
    Math Biosci; 2013 Dec; 246(2):315-25. PubMed ID: 23391489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic networks in motion: 13C-based flux analysis.
    Sauer U
    Mol Syst Biol; 2006; 2():62. PubMed ID: 17102807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens AM1 growth as validation.
    Ao P; Lee LW; Lidstrom ME; Yin L; Zhu X
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):980-94. PubMed ID: 18807980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.
    Kitayama T; Kinoshita A; Sugimoto M; Nakayama Y; Tomita M
    Theor Biol Med Model; 2006 Jul; 3():24. PubMed ID: 16846504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modular metabolic control analysis of large responses in branched systems--application to aspartate metabolism.
    Ortega F; Acerenza L
    FEBS J; 2011 Jul; 278(14):2565-78. PubMed ID: 21592306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline.
    Foster CJ; Gopalakrishnan S; Antoniewicz MR; Maranas CD
    PLoS Comput Biol; 2019 Sep; 15(9):e1007319. PubMed ID: 31504032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved metabolite profile smoothing for flux estimation.
    Dromms RA; Styczynski MP
    Mol Biosyst; 2015 Sep; 11(9):2394-405. PubMed ID: 26172986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks.
    Hoppe A; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jun; 1():23. PubMed ID: 17543097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of metabolic system parameters using global optimization methods.
    Polisetty PK; Voit EO; Gatzke EP
    Theor Biol Med Model; 2006 Jan; 3():4. PubMed ID: 16441881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-timescale analysis of a metabolic network in synthetic biology: a kinetic model for 3-hydroxypropionic acid production via beta-alanine.
    Dalwadi MP; King JR; Minton NP
    J Math Biol; 2018 Jul; 77(1):165-199. PubMed ID: 29159570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.