These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24801967)

  • 21. Artificial tactile sensing in minimally invasive surgery - a new technical approach.
    Schostek S; Ho CN; Kalanovic D; Schurr MO
    Minim Invasive Ther Allied Technol; 2006; 15(5):296-304. PubMed ID: 17062404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active and Passive Haptic Training Approaches in VR Laparoscopic Surgery Training.
    Marutani T; Kato T; Tagawa K; Tanaka HT; Komori M; Kurumi Y; Morikawa S
    Stud Health Technol Inform; 2016; 220():215-8. PubMed ID: 27046581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review on aspects of artificial tactile feedback in laparoscopic surgery.
    Schostek S; Schurr MO; Buess GF
    Med Eng Phys; 2009 Oct; 31(8):887-98. PubMed ID: 19595620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Haptic Edge Detection Through Shear.
    Platkiewicz J; Lipson H; Hayward V
    Sci Rep; 2016 Mar; 6():23551. PubMed ID: 27009331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: results of a phantom study.
    Wagner M; Gondan M; Zöllner C; Wünscher JJ; Nickel F; Albala L; Groch A; Suwelack S; Speidel S; Maier-Hein L; Müller-Stich BP; Kenngott HG
    Surg Endosc; 2016 Feb; 30(2):495-503. PubMed ID: 26099616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A resonant tactile stiffness sensor for lump localization in robot-assisted minimally invasive surgery.
    Yun Y; Wang Y; Guo H; Wang Y; Wu H; Chen B; Ju F
    Proc Inst Mech Eng H; 2019 Sep; 233(9):909-920. PubMed ID: 31210594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial tactile feedback can significantly improve tissue examination through remote palpation.
    Schostek S; Binser MJ; Rieber F; Ho CN; Schurr MO; Buess GF
    Surg Endosc; 2010 Sep; 24(9):2299-307. PubMed ID: 20354870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tactile optical sensor for use in minimal invasive surgery.
    Fischer H; Trapp R
    Stud Health Technol Inform; 1996; 29():623-9. PubMed ID: 10172852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial tactile sensing approach in aortic-repair-laparoscopy: aorta cross clamping during surgery.
    Pahlavan P; Najarian S; Moini M; Afshari E
    J Med Eng Technol; 2011 Nov; 35(8):420-4. PubMed ID: 22066496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D tracking of laparoscopic instruments using statistical and geometric modeling.
    Wolf R; Duchateau J; Cinquin P; Voros S
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 1):203-10. PubMed ID: 22003618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and Evaluation of FBG-Based Tension Sensor in Laparoscope Surgical Robots.
    Xue R; Ren B; Huang J; Yan Z; Du Z
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29958441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force sensing micro-forceps for robot assisted retinal surgery.
    Kuru I; Gonenc B; Balicki M; Handa J; Gehlbach P; Taylor RH; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1401-4. PubMed ID: 23366162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Smart laparoscopic grasper integrated with fiber Bragg grating based tactile sensor for real-time force feedback.
    Wang P; Zhang S; Liu Z; Huang Y; Huang J; Huang X; Chen J; Fang B; Peng D
    J Biophotonics; 2022 May; 15(5):e202100331. PubMed ID: 35020276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A tactile feedback system for robotic surgery.
    Culjat MO; King CH; Franco ML; Lewis CE; Bisley JW; Dutson EP; Grundfest WS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1930-4. PubMed ID: 19163068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ergonomic design criteria for a novel laparoscopic tool handle with tactile feedback.
    Mårvik R; Nesbakken R; Langø T; Yavuz Y; Vanhauwaert Bjelland H; Ottermo MV; Stavdahl O
    Minerva Chir; 2006 Oct; 61(5):435-44. PubMed ID: 17159752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and evaluation of a master-slave robot system for single-incision laparoscopic surgery.
    Horise Y; Nishikawa A; Sekimoto M; Kitanaka Y; Miyoshi N; Takiguchi S; Doki Y; Mori M; Miyazaki F
    Int J Comput Assist Radiol Surg; 2012 Mar; 7(2):289-96. PubMed ID: 21927865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving tactile sensation in minimally invasive pediatric surgery.
    Tirabassi MV; Wadie G; Tashjian DB; Moriarty KP
    J Laparoendosc Adv Surg Tech A; 2007 Aug; 17(4):501-3. PubMed ID: 17705736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.