These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 24802150)
1. NMR- and MS-based metabolomics: various organ responses following naphthalene intervention. Ling YS; Liang HJ; Chung MH; Lin MH; Lin CY Mol Biosyst; 2014 Jul; 10(7):1918-31. PubMed ID: 24802150 [TBL] [Abstract][Full Text] [Related]
2. Use of nuclear magnetic resonance-based metabolomics to characterize the biochemical effects of naphthalene on various organs of tolerant mice. Lin CY; Huang FP; Ling YS; Liang HJ; Lee SH; Hu MY; Tsao PN PLoS One; 2015; 10(4):e0120429. PubMed ID: 25849086 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the biochemical effects of naphthalene on the mouse respiratory system using NMR-based metabolomics. Hong JH; Lee WC; Hsu YM; Liang HJ; Wan CH; Chien CL; Lin CY J Appl Toxicol; 2014 Dec; 34(12):1379-88. PubMed ID: 24478122 [TBL] [Abstract][Full Text] [Related]
4. Two-dimensional LC-MS/MS to enhance ceramide and phosphatidylcholine species profiling in mouse liver. Ling YS; Liang HJ; Lin MH; Tang CH; Wu KY; Kuo ML; Lin CY Biomed Chromatogr; 2014 Sep; 28(9):1284-93. PubMed ID: 24691749 [TBL] [Abstract][Full Text] [Related]
5. Mass spectrometry-based lipidomics to explore the biochemical effects of naphthalene toxicity or tolerance in a mouse model. Lee SH; Hong SH; Tang CH; Ling YS; Chen KH; Liang HJ; Lin CY PLoS One; 2018; 13(10):e0204829. PubMed ID: 30273358 [TBL] [Abstract][Full Text] [Related]
6. Identifying Metabolic Perturbations and Toxic Effects of Zhang P; Wang S; He Y; Xu Y; Shi D; Yang F; Yu W; Zhu W; He L Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31683916 [TBL] [Abstract][Full Text] [Related]
7. Protective effect of aqueous garlic extract against naphthalene-induced oxidative stress in mice. Omurtag GZ; Güranlioğlu FD; Sehirli O; Arbak S; Uslu B; Gedik N; Sener G J Pharm Pharmacol; 2005 May; 57(5):623-30. PubMed ID: 15901351 [TBL] [Abstract][Full Text] [Related]
8. Assessment of compatibility between extraction methods for NMR- and LC/MS-based metabolomics. Beltran A; Suarez M; Rodríguez MA; Vinaixa M; Samino S; Arola L; Correig X; Yanes O Anal Chem; 2012 Jul; 84(14):5838-44. PubMed ID: 22697410 [TBL] [Abstract][Full Text] [Related]
9. Cytotoxicity of naphthalene toward cells from target and non-target organs in vitro. Kedderis GL; Shepard KG; Recio L Chem Biol Interact; 2014 Feb; 209():85-95. PubMed ID: 24361489 [TBL] [Abstract][Full Text] [Related]
10. Metabolomics of Lung Microdissections Reveals Region- and Sex-Specific Metabolic Effects of Acute Naphthalene Exposure in Mice. Stevens NC; Edwards PC; Tran LM; Ding X; Van Winkle LS; Fiehn O Toxicol Sci; 2021 Nov; 184(2):214-222. PubMed ID: 34498071 [TBL] [Abstract][Full Text] [Related]
11. Metabolism and cytotoxicity of naphthalene oxide in the isolated perfused mouse lung. Kanekal S; Plopper C; Morin D; Buckpitt A J Pharmacol Exp Ther; 1991 Jan; 256(1):391-401. PubMed ID: 1988668 [TBL] [Abstract][Full Text] [Related]
12. Metabolic profiling studies on the toxicological effects of realgar in rats by (1)H NMR spectroscopy. Wei L; Liao P; Wu H; Li X; Pei F; Li W; Wu Y Toxicol Appl Pharmacol; 2009 Feb; 234(3):314-25. PubMed ID: 19073202 [TBL] [Abstract][Full Text] [Related]
14. Endogenous and xenobiotic metabolite profiling of liver extracts from SCID and chimeric humanized mice following repeated oral administration of troglitazone. Barnes AJ; Baker DR; Hobby K; Ashton S; Michopoulos F; Spagou K; Loftus NJ; Wilson ID Xenobiotica; 2014 Jan; 44(2):174-85. PubMed ID: 24350779 [TBL] [Abstract][Full Text] [Related]
15. LC-MS-based lipidomics to examine acute rat pulmonary responses after nano- and fine-sized ZnO particle inhalation exposure. Lee SH; Tang CH; Lin WY; Chen KH; Liang HJ; Cheng TJ; Lin CY Nanotoxicology; 2018 Jun; 12(5):439-452. PubMed ID: 29635945 [TBL] [Abstract][Full Text] [Related]
16. GC-MS-based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats. Bando K; Kunimatsu T; Sakai J; Kimura J; Funabashi H; Seki T; Bamba T; Fukusaki E J Appl Toxicol; 2011 Aug; 31(6):524-35. PubMed ID: 21154879 [TBL] [Abstract][Full Text] [Related]
17. Multiplatform analytical methodology for metabolic fingerprinting of lung tissue. Naz S; García A; Barbas C Anal Chem; 2013 Nov; 85(22):10941-8. PubMed ID: 24144172 [TBL] [Abstract][Full Text] [Related]
18. Lipidomic Perturbations in Lung, Kidney, and Liver Tissues of p53 Knockout Mice Analyzed by Nanoflow UPLC-ESI-MS/MS. Park SM; Byeon SK; Sung H; Cho SY; Seong JK; Moon MH J Proteome Res; 2016 Oct; 15(10):3763-3772. PubMed ID: 27581229 [TBL] [Abstract][Full Text] [Related]
19. Untargeted lipidomics based on UPLC-QTOF-MS/MS and structural characterization reveals dramatic compositional changes in serum and renal lipids in mice with glyoxylate-induced nephrolithiasis. Chao Y; Gao S; Wang X; Li N; Zhao H; Wen X; Lou Z; Dong X J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Sep; 1095():258-266. PubMed ID: 30099286 [TBL] [Abstract][Full Text] [Related]
20. Evidence for hepatic formation, export and covalent binding of reactive naphthalene metabolites in extrahepatic tissues in vivo. Buckpitt AR; Warren DL J Pharmacol Exp Ther; 1983 Apr; 225(1):8-16. PubMed ID: 6834280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]