These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 24802301)
41. Sensitivity of protein adsorption to architectural variations in a protein-resistant polymer brush containing engineered nanoscale adhesive sites. Gon S; Santore MM Langmuir; 2011 Dec; 27(24):15083-91. PubMed ID: 22040182 [TBL] [Abstract][Full Text] [Related]
42. Oligo(ethylene glycol)-modified β-cyclodextrin-based polyrotaxanes for simultaneously modulating solubility and cellular internalization efficiency. Tamura A; Ohashi M; Yui N J Biomater Sci Polym Ed; 2017; 28(10-12):1124-1139. PubMed ID: 28299982 [TBL] [Abstract][Full Text] [Related]
43. Biomimetic coating of organic polymers with a protein-functionalized layer of calcium phosphate: the surface properties of the carrier influence neither the coating characteristics nor the incorporation mechanism or release kinetics of the protein. Wu G; Liu Y; Iizuka T; Hunziker EB Tissue Eng Part C Methods; 2010 Dec; 16(6):1255-65. PubMed ID: 20196638 [TBL] [Abstract][Full Text] [Related]
45. Thin polymer brush decouples biomaterial's micro-/nanotopology and stem cell adhesion. Klein Gunnewiek M; Benetti EM; Di Luca A; van Blitterswijk CA; Moroni L; Vancso GJ Langmuir; 2013 Nov; 29(45):13843-52. PubMed ID: 24117174 [TBL] [Abstract][Full Text] [Related]
46. Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Li L; Chen S; Jiang S J Biomater Sci Polym Ed; 2007; 18(11):1415-27. PubMed ID: 17961324 [TBL] [Abstract][Full Text] [Related]
47. Evaluation of a novel poly(epsilon-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute. Rhee SH; Lee YK; Lim BS; Yoo JJ; Kim HJ Biomacromolecules; 2004; 5(4):1575-9. PubMed ID: 15244480 [TBL] [Abstract][Full Text] [Related]
48. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Chang KY; Cheng LW; Ho GH; Huang YP; Lee YD Acta Biomater; 2009 Jul; 5(6):1937-47. PubMed ID: 19282262 [TBL] [Abstract][Full Text] [Related]
49. Impedance and QCM analysis of the protein resistance of self-assembled PEGylated alkanethiol layers on gold. Menz B; Knerr R; Göpferich A; Steinem C Biomaterials; 2005 Jul; 26(20):4237-43. PubMed ID: 15683646 [TBL] [Abstract][Full Text] [Related]
50. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials. Tu Q; Wang JC; Liu R; Chen Y; Zhang Y; Wang DE; Yuan MS; Xu J; Wang J Colloids Surf B Biointerfaces; 2013 Aug; 108():34-43. PubMed ID: 23511626 [TBL] [Abstract][Full Text] [Related]
51. Poly(l-lactide-co-2-(2-methoxyethoxy)ethyl methacrylate): a biodegradable polymer with protein resistance. Xu J; Fan X; Yang J; Ma C; Ye X; Zhang G Colloids Surf B Biointerfaces; 2014 Apr; 116():531-6. PubMed ID: 24572496 [TBL] [Abstract][Full Text] [Related]
52. Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study. He Y; Chang Y; Hower JC; Zheng J; Chen S; Jiang S Phys Chem Chem Phys; 2008 Sep; 10(36):5539-44. PubMed ID: 18956088 [TBL] [Abstract][Full Text] [Related]
53. Polyester Brush Coatings for Circularity: Grafting, Degradation, and Repeated Growth. Brió Pérez M; Hempenius MA; de Beer S; Wurm FR Macromolecules; 2023 Nov; 56(21):8856-8865. PubMed ID: 38024158 [TBL] [Abstract][Full Text] [Related]
54. Biodegradable nanoparticles made from polylactide-grafted dextran copolymers. Nouvel C; Raynaud J; Marie E; Dellacherie E; Six JL; Durand A J Colloid Interface Sci; 2009 Feb; 330(2):337-43. PubMed ID: 19022457 [TBL] [Abstract][Full Text] [Related]
55. Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering. Huot S; Rohman G; Riffault M; Pinzano A; Grossin L; Migonney V Biomed Mater Eng; 2013; 23(4):281-8. PubMed ID: 23798649 [TBL] [Abstract][Full Text] [Related]
56. A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. Ito Y; Hasuda H; Kamitakahara M; Ohtsuki C; Tanihara M; Kang IK; Kwon OH J Biosci Bioeng; 2005 Jul; 100(1):43-9. PubMed ID: 16233849 [TBL] [Abstract][Full Text] [Related]
57. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171 [TBL] [Abstract][Full Text] [Related]
58. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Zhang YZ; Wang X; Feng Y; Li J; Lim CT; Ramakrishna S Biomacromolecules; 2006 Apr; 7(4):1049-57. PubMed ID: 16602720 [TBL] [Abstract][Full Text] [Related]
59. Hybrid POSS-containing brush on gold surfaces for protein resistance. Ye X; Gong J; Wang Z; Zhang Z; Han S; Jiang X Macromol Biosci; 2013 Jul; 13(7):921-6. PubMed ID: 23703844 [TBL] [Abstract][Full Text] [Related]
60. Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy. Cheng X; Filiaggi M; Roscoe SG Biomaterials; 2004 Oct; 25(23):5395-403. PubMed ID: 15130724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]