BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24802854)

  • 1. Effects of hemicellulose pre-extraction and cellulose nanofiber on the properties of rice straw pulp.
    Hasanjanzadeh H; Hedjazi S; Ashori A; Mahdavi S; Yousefi H
    Int J Biol Macromol; 2014 Jul; 68():198-204. PubMed ID: 24802854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hot water pre-extraction on surface properties of bagasse soda pulp.
    Cordeiro N; Ashori A; Hamzeh Y; Faria M
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):613-7. PubMed ID: 25427464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice straw pulp obtained by using various methods.
    Rodríguez A; Moral A; Serrano L; Labidi J; Jiménez L
    Bioresour Technol; 2008 May; 99(8):2881-6. PubMed ID: 17662601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium hydroxide pulping of rice straw in biorefinery initiatives.
    Jahan MS; Haris F; Rahman MM; Samaddar PR; Sutradhar S
    Bioresour Technol; 2016 Nov; 219():445-450. PubMed ID: 27518034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps.
    Sánchez R; Espinosa E; Domínguez-Robles J; Loaiza JM; Rodríguez A
    Int J Biol Macromol; 2016 Nov; 92():1025-1033. PubMed ID: 27514440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites.
    Saba N; Mohammad F; Pervaiz M; Jawaid M; Alothman OY; Sain M
    Int J Biol Macromol; 2017 Apr; 97():190-200. PubMed ID: 28082223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hot-water extraction on alkaline pulping of bagasse.
    Lei Y; Liu S; Li J; Sun R
    Biotechnol Adv; 2010; 28(5):609-12. PubMed ID: 20493244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of high-quality long natural cellulose fibers from rice straw.
    Reddy N; Yang Y
    J Agric Food Chem; 2006 Oct; 54(21):8077-81. PubMed ID: 17032012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites.
    Lavoratti A; Scienza LC; Zattera AJ
    Carbohydr Polym; 2016 Jan; 136():955-63. PubMed ID: 26572434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.
    Martin-Sampedro R; Eugenio ME; Moreno JA; Revilla E; Villar JC
    Bioresour Technol; 2014 Feb; 153():236-44. PubMed ID: 24368272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface and structure characteristics, self-assembling, and solvent compatibility of holocellulose nanofibrils.
    Gu J; Hsieh YL
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4192-201. PubMed ID: 25635536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soda-anthraquinone pulping of palm oil empty fruit bunches and beating of the resulting pulp.
    Jiménez L; Serrano L; Rodríguez A; Sánchez R
    Bioresour Technol; 2009 Feb; 100(3):1262-7. PubMed ID: 18815028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of green liquor pretreatment on the chemical composition and enzymatic digestibility of rice straw.
    Gu F; Wang W; Jing L; Jin Y
    Bioresour Technol; 2013 Dec; 149():375-82. PubMed ID: 24128400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and saccharification of rice straw pretreated with sulfur trioxide micro-thermal explosion collaborative dilutes alkali.
    Yao RS; Hu HJ; Deng SS; Wang H; Zhu HX
    Bioresour Technol; 2011 May; 102(10):6340-3. PubMed ID: 21392977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol.
    Jiang F; Hsieh YL
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20075-84. PubMed ID: 25341690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation.
    Kumagai A; Tajima N; Iwamoto S; Morimoto T; Nagatani A; Okazaki T; Endo T
    Int J Biol Macromol; 2019 Jan; 121():989-995. PubMed ID: 30342153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls.
    Alemdar A; Sain M
    Bioresour Technol; 2008 Apr; 99(6):1664-71. PubMed ID: 17566731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties.
    Peng XW; Ren JL; Zhong LX; Sun RC
    Biomacromolecules; 2011 Sep; 12(9):3321-9. PubMed ID: 21815695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw.
    Taniguchi M; Suzuki H; Watanabe D; Sakai K; Hoshino K; Tanaka T
    J Biosci Bioeng; 2005 Dec; 100(6):637-43. PubMed ID: 16473773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents.
    Lu Y; Tao P; Zhang N; Nie S
    Carbohydr Polym; 2020 Oct; 245():116463. PubMed ID: 32718602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.