These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24803414)

  • 21. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics.
    Urakawa A; Iannuzzi M; Hutter J; Baiker A
    Chemistry; 2007; 13(24):6828-40. PubMed ID: 17566132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy.
    Li N; Wang Y; Tang D; Zhou H
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9271-4. PubMed ID: 26096640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol.
    Rezayee NM; Huff CA; Sanford MS
    J Am Chem Soc; 2015 Jan; 137(3):1028-31. PubMed ID: 25594380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tandem hydroformylation/hydrogenation of alkenes to normal alcohols using Rh/Ru dual catalyst or Ru single component catalyst.
    Takahashi K; Yamashita M; Nozaki K
    J Am Chem Soc; 2012 Nov; 134(45):18746-57. PubMed ID: 23116366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ruthenium-catalyzed dehydrogenation of ammonia boranes.
    Blaquiere N; Diallo-Garcia S; Gorelsky SI; Black DA; Fagnou K
    J Am Chem Soc; 2008 Oct; 130(43):14034-5. PubMed ID: 18831582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trimetallic supported catalyst for renewable source of energy and environmental control through CO2 conversion.
    Hussain ST; Mazhar M; Hasib-ur-Rahman M; Bari M
    Environ Technol; 2009 May; 30(6):543-59. PubMed ID: 19603702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved Deep Q-Network for User-Side Battery Energy Storage Charging and Discharging Strategy in Industrial Parks.
    Chen S; Jiang C; Li J; Xiang J; Xiao W
    Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ruthenium(II)-catalyzed hydrogenation of carbon dioxide to formic acid. Theoretical study of real catalyst, ligand effects, and solvation effects.
    Ohnishi YY; Matsunaga T; Nakao Y; Sato H; Sakaki S
    J Am Chem Soc; 2005 Mar; 127(11):4021-32. PubMed ID: 15771539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A carbon-air battery for high power generation.
    Yang B; Ran R; Zhong Y; Su C; Tadé MO; Shao Z
    Angew Chem Int Ed Engl; 2015 Mar; 54(12):3722-5. PubMed ID: 25620573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation.
    Urakawa A; Jutz F; Laurenczy G; Baiker A
    Chemistry; 2007; 13(14):3886-99. PubMed ID: 17294492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rechargeable molecular cluster batteries.
    Yoshikawa H; Kazama C; Awaga K; Satoh M; Wada J
    Chem Commun (Camb); 2007 Aug; (30):3169-70. PubMed ID: 17653377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.
    Mondal B; Neese F; Ye S
    Inorg Chem; 2015 Aug; 54(15):7192-8. PubMed ID: 26204267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Driven Multicolor Electrochromic Energy Storage Windows Powered by a "Perpetual" Rechargeable Battery.
    Zhai Y; Li Y; Zhu Z; Zhu C; Du D; Lin Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48013-48020. PubMed ID: 31684718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox Mediator-Enhanced Performance and Generation of Singlet Oxygen in Li-CO
    Cao D; Liu X; Yuan X; Yu F; Chen Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39341-39346. PubMed ID: 34382405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembled monolayers of n-alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes.
    Malkhandi S; Yang B; Manohar AK; Prakash GK; Narayanan SR
    J Am Chem Soc; 2013 Jan; 135(1):347-53. PubMed ID: 23237487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.