These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24803434)

  • 1. Leucophores are similar to xanthophores in their specification and differentiation processes in medaka.
    Kimura T; Nagao Y; Hashimoto H; Yamamoto-Shiraishi Y; Yamamoto S; Yabe T; Takada S; Kinoshita M; Kuroiwa A; Naruse K
    Proc Natl Acad Sci U S A; 2014 May; 111(20):7343-8. PubMed ID: 24803434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sox5 functions as a fate switch in medaka pigment cell development.
    Nagao Y; Suzuki T; Shimizu A; Kimura T; Seki R; Adachi T; Inoue C; Omae Y; Kamei Y; Hara I; Taniguchi Y; Naruse K; Wakamatsu Y; Kelsh RN; Hibi M; Hashimoto H
    PLoS Genet; 2014 Apr; 10(4):e1004246. PubMed ID: 24699463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish.
    Nagao Y; Takada H; Miyadai M; Adachi T; Seki R; Kamei Y; Hara I; Taniguchi Y; Naruse K; Hibi M; Kelsh RN; Hashimoto H
    PLoS Genet; 2018 Apr; 14(4):e1007260. PubMed ID: 29621239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of no-yellow-pigment Xenopus tropicalis by slc2a7 gene knockout.
    Nakajima K; Shimamura M; Furuno N
    Dev Dyn; 2021 Oct; 250(10):1420-1431. PubMed ID: 33760303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pax7 is required for establishment of the xanthophore lineage in zebrafish embryos.
    Nord H; Dennhag N; Muck J; von Hofsten J
    Mol Biol Cell; 2016 Jun; 27(11):1853-62. PubMed ID: 27053658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of
    Otsuki Y; Okuda Y; Naruse K; Saya H
    G3 (Bethesda); 2020 Jan; 10(1):311-319. PubMed ID: 31757930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medaka double mutants for color interfere and leucophore free: characterization of the xanthophore-somatolactin relationship using the leucophore free gene.
    Fukamachi S; Wakamatsu Y; Mitani H
    Dev Genes Evol; 2006 Mar; 216(3):152-7. PubMed ID: 16344968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A gene regulatory network combining Pax3/7, Sox10 and Mitf generates diverse pigment cell types in medaka and zebrafish.
    Miyadai M; Takada H; Shiraishi A; Kimura T; Watakabe I; Kobayashi H; Nagao Y; Naruse K; Higashijima SI; Shimizu T; Kelsh RN; Hibi M; Hashimoto H
    Development; 2023 Oct; 150(19):. PubMed ID: 37823232
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Kimura T; Takehana Y; Naruse K
    G3 (Bethesda); 2017 Apr; 7(4):1357-1363. PubMed ID: 28258112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation.
    Patterson LB; Parichy DM
    PLoS Genet; 2013 May; 9(5):e1003561. PubMed ID: 23737760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zebrafish endzone regulates neural crest-derived chromatophore differentiation and morphology.
    Arduini BL; Gallagher GR; Henion PD
    PLoS One; 2008 Jul; 3(7):e2845. PubMed ID: 18665240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uric acid is a major chemical constituent for the whitish coloration in the medaka leucophores.
    Goda M; Miyagi A; Kitamoto T; Kondo M; Hashimoto H
    Pigment Cell Melanoma Res; 2023 Sep; 36(5):416-422. PubMed ID: 37253924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish.
    Mahalwar P; Walderich B; Singh AP; Nüsslein-Volhard C
    Science; 2014 Sep; 345(6202):1362-4. PubMed ID: 25214630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of sox9b to pigment cell formation in medaka fish.
    Tsunogai Y; Miyadai M; Nagao Y; Sugiwaka K; Kelsh RN; Hibi M; Hashimoto H
    Dev Growth Differ; 2021 Dec; 63(9):516-522. PubMed ID: 34807452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatolactin selectively regulates proliferation and morphogenesis of neural-crest derived pigment cells in medaka.
    Fukamachi S; Sugimoto M; Mitani H; Shima A
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10661-6. PubMed ID: 15249680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest.
    Minchin JE; Hughes SM
    Dev Biol; 2008 May; 317(2):508-22. PubMed ID: 18417109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development.
    Kelsh RN; Inoue C; Momoi A; Kondoh H; Furutani-Seiki M; Ozato K; Wakamatsu Y
    Mech Dev; 2004 Jul; 121(7-8):841-59. PubMed ID: 15210190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish.
    Frohnhöfer HG; Krauss J; Maischein HM; Nüsslein-Volhard C
    Development; 2013 Jul; 140(14):2997-3007. PubMed ID: 23821036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development.
    Parichy DM; Turner JM
    Development; 2003 Mar; 130(5):817-33. PubMed ID: 12538511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio.
    Parichy DM; Ransom DG; Paw B; Zon LI; Johnson SL
    Development; 2000 Jul; 127(14):3031-44. PubMed ID: 10862741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.