These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A Parameterization of Cholesterol for Mixed Lipid Bilayer Simulation within the Amber Lipid14 Force Field. Madej BD; Gould IR; Walker RC J Phys Chem B; 2015 Sep; 119(38):12424-35. PubMed ID: 26359797 [TBL] [Abstract][Full Text] [Related]
3. Lipid21: Complex Lipid Membrane Simulations with AMBER. Dickson CJ; Walker RC; Gould IR J Chem Theory Comput; 2022 Mar; 18(3):1726-1736. PubMed ID: 35113553 [TBL] [Abstract][Full Text] [Related]
4. A New Lipid Force Field (FUJI). Kamiya N; Kayanuma M; Fujitani H; Shinoda K J Chem Theory Comput; 2020 Jun; 16(6):3664-3676. PubMed ID: 32384238 [TBL] [Abstract][Full Text] [Related]
5. Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble. Coimbra JT; Sousa SF; Fernandes PA; Rangel M; Ramos MJ J Biomol Struct Dyn; 2014; 32(1):88-103. PubMed ID: 23730894 [TBL] [Abstract][Full Text] [Related]
6. Derivation of original RESP atomic partial charges for MD simulations of the LDAO surfactant with AMBER: applications to a model of micelle and a fragment of the lipid kinase PI4KA. Karakas E; Taveneau C; Bressanelli S; Marchi M; Robert B; Abel S J Biomol Struct Dyn; 2017 Jan; 35(1):159-181. PubMed ID: 26998712 [TBL] [Abstract][Full Text] [Related]
7. LIPID11: a modular framework for lipid simulations using amber. Skjevik ÅA; Madej BD; Walker RC; Teigen K J Phys Chem B; 2012 Sep; 116(36):11124-36. PubMed ID: 22916730 [TBL] [Abstract][Full Text] [Related]
8. Influence of Bilayer Size and Number in Multi-Bilayer DOPC Simulations at Full and Low Hydration. Stachura SS; Malajczuk CJ; Kuprusevicius E; Mancera RL Langmuir; 2019 Feb; 35(6):2399-2411. PubMed ID: 30632763 [TBL] [Abstract][Full Text] [Related]
9. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. Tucker MR; Piana S; Tan D; LeVine MV; Shaw DE J Phys Chem B; 2022 Jun; 126(24):4442-4457. PubMed ID: 35694853 [TBL] [Abstract][Full Text] [Related]
10. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. Lee J; Cheng X; Swails JM; Yeom MS; Eastman PK; Lemkul JA; Wei S; Buckner J; Jeong JC; Qi Y; Jo S; Pande VS; Case DA; Brooks CL; MacKerell AD; Klauda JB; Im W J Chem Theory Comput; 2016 Jan; 12(1):405-13. PubMed ID: 26631602 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Force-Field Parameters on Cytochrome P450-Membrane Interactions: Structure and Dynamics. Mustafa G; Nandekar PP; Mukherjee G; Bruce NJ; Wade RC Sci Rep; 2020 Apr; 10(1):7284. PubMed ID: 32350331 [TBL] [Abstract][Full Text] [Related]
12. Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface. Sandoval-Perez A; Pluhackova K; Böckmann RA J Chem Theory Comput; 2017 May; 13(5):2310-2321. PubMed ID: 28388089 [TBL] [Abstract][Full Text] [Related]
13. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Graen T; Hoefling M; Grubmüller H J Chem Theory Comput; 2014 Dec; 10(12):5505-12. PubMed ID: 26583233 [TBL] [Abstract][Full Text] [Related]
14. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids. Tessier MB; Demarco ML; Yongye AB; Woods RJ Mol Simul; 2008; 34(4):349-363. PubMed ID: 22247593 [TBL] [Abstract][Full Text] [Related]
15. Principal Component Analysis of Lipid Molecule Conformational Changes in Molecular Dynamics Simulations. Buslaev P; Gordeliy V; Grudinin S; Gushchin I J Chem Theory Comput; 2016 Mar; 12(3):1019-28. PubMed ID: 26765212 [TBL] [Abstract][Full Text] [Related]
16. Membrane Protein Simulations Using AMBER Force Field and Berger Lipid Parameters. Cordomí A; Caltabiano G; Pardo L J Chem Theory Comput; 2012 Mar; 8(3):948-58. PubMed ID: 26593357 [TBL] [Abstract][Full Text] [Related]
17. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins. Cerutti DS; Swope WC; Rice JE; Case DA J Chem Theory Comput; 2014 Oct; 10(10):4515-4534. PubMed ID: 25328495 [TBL] [Abstract][Full Text] [Related]
18. Improving Computational Predictions of Single-Stranded RNA Tetramers with Revised α/γ Torsional Parameters for the Amber Force Field. Wales DJ; Yildirim I J Phys Chem B; 2017 Apr; 121(14):2989-2999. PubMed ID: 28319659 [TBL] [Abstract][Full Text] [Related]
19. Assessing the Current State of Amber Force Field Modifications for DNA. Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587 [TBL] [Abstract][Full Text] [Related]
20. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model. Debiec KT; Cerutti DS; Baker LR; Gronenborn AM; Case DA; Chong LT J Chem Theory Comput; 2016 Aug; 12(8):3926-47. PubMed ID: 27399642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]