These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24803865)

  • 1. Parameterization of DFTB3/3OB for Sulfur and Phosphorus for Chemical and Biological Applications.
    Gaus M; Lu X; Elstner M; Cui Q
    J Chem Theory Comput; 2014 Apr; 10(4):1518-1537. PubMed ID: 24803865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications.
    Lu X; Gaus M; Elstner M; Cui Q
    J Phys Chem B; 2015 Jan; 119(3):1062-82. PubMed ID: 25178644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFTB3 Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of Hubbard Parameters.
    Gaus M; Jin H; Demapan D; Christensen AS; Goyal P; Elstner M; Cui Q
    J Chem Theory Comput; 2015 Sep; 11(9):4205-19. PubMed ID: 26575916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K, and Na in organic and biological systems.
    Kubillus M; Kubař T; Gaus M; Řezáč J; Elstner M
    J Chem Theory Comput; 2015 Jan; 11(1):332-42. PubMed ID: 26889515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules.
    Vuong VQ; Akkarapattiakal Kuriappan J; Kubillus M; Kranz JJ; Mast T; Niehaus TA; Irle S; Elstner M
    J Chem Theory Comput; 2018 Jan; 14(1):115-125. PubMed ID: 29232515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parametrization and Benchmark of DFTB3 for Organic Molecules.
    Gaus M; Goez A; Elstner M
    J Chem Theory Comput; 2013 Jan; 9(1):338-54. PubMed ID: 26589037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulation of water and hydration effects in different environments: challenges and developments for DFTB based models.
    Goyal P; Qian HJ; Irle S; Lu X; Roston D; Mori T; Elstner M; Cui Q
    J Phys Chem B; 2014 Sep; 118(38):11007-27. PubMed ID: 25166899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.
    Choi TH; Liang R; Maupin CM; Voth GA
    J Phys Chem B; 2013 May; 117(17):5165-79. PubMed ID: 23566052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleic acid reactivity: challenges for next-generation semiempirical quantum models.
    Huang M; Giese TJ; York DM
    J Comput Chem; 2015 Jul; 36(18):1370-89. PubMed ID: 25943338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Density Functional Tight Binding with Natural Bonding Orbitals.
    Lu X; Duchimaza-Heredia J; Cui Q
    J Phys Chem A; 2019 Aug; 123(34):7439-7453. PubMed ID: 31373822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Description of phosphate hydrolysis reactions with the Self-Consistent-Charge Density-Functional-Tight-Binding (SCC-DFTB) theory. 1. Parameterization.
    Yang Y; Yu H; York D; Elstner M; Cui Q
    J Chem Theory Comput; 2008; 4(12):2067-2084. PubMed ID: 19352441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions.
    Kuechler ER; Giese TJ; York DM
    J Chem Phys; 2016 Apr; 144(16):164115. PubMed ID: 27131539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the applicability of density functional tight binding to transition metal ions. Parameterization for nickel with the spin-polarized DFTB3 model.
    Vujović M; Huynh M; Steiner S; Garcia-Fernandez P; Elstner M; Cui Q; Gruden M
    J Comput Chem; 2019 Jan; 40(2):400-413. PubMed ID: 30299559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking density functional tight binding models for barrier heights and reaction energetics of organic molecules.
    Gruden M; Andjeklović L; Jissy AK; Stepanović S; Zlatar M; Cui Q; Elstner M
    J Comput Chem; 2017 Sep; 38(25):2171-2185. PubMed ID: 28736893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of d-d interactions in density functional tight binding for transition metal ions with a ligand field model: assessment of a DFTB3+
    Stepanovic S; Lai R; Elstner M; Gruden M; Garcia-Fernandez P; Cui Q
    Phys Chem Chem Phys; 2020 Dec; 22(46):27084-27095. PubMed ID: 33220674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization.
    Christensen AS; Elstner M; Cui Q
    J Chem Phys; 2015 Aug; 143(8):084123. PubMed ID: 26328834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Covalent Interactions Atlas Benchmark Data Sets 2: Hydrogen Bonding in an Extended Chemical Space.
    Řezáč J
    J Chem Theory Comput; 2020 Oct; 16(10):6305-6316. PubMed ID: 32941026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bond-Energy/Bond-Order and Populations Relationship.
    Zulueta B; Tulyani SV; Westmoreland PR; Frisch MJ; Petersson EJ; Petersson GA; Keith JA
    J Chem Theory Comput; 2022 Aug; 18(8):4774-4794. PubMed ID: 35849729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Description of halogen bonding in semiempirical quantum-mechanical and self-consistent charge density-functional tight-binding methods.
    Řezáč J
    J Comput Chem; 2019 Jun; 40(17):1633-1642. PubMed ID: 30941801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.