These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24803869)

  • 1. A Comparative Study of Transferable Aspherical Pseudoatom Databank and Classical Force Fields for Predicting Electrostatic Interactions in Molecular Dimers.
    Kumar P; Bojarowski SA; Jarzembska KN; Domagała S; Vanommeslaeghe K; Mackerell AD; Dominiak PM
    J Chem Theory Comput; 2014 Apr; 10(4):1652-1664. PubMed ID: 24803869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of point multipole moments and charge penetration for intermolecular electrostatic interaction energies from the University at Buffalo pseudoatom databank model of electron density.
    Bojarowski SA; Kumar P; Dominiak PM
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2017 Aug; 73(Pt 4):598-609. PubMed ID: 28762970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New version of the theoretical databank of transferable aspherical pseudoatoms, UBDB2011--towards nucleic acid modelling.
    Jarzembska KN; Dominiak PM
    Acta Crystallogr A; 2012 Jan; 68(Pt 1):139-47. PubMed ID: 22186290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.
    Volkov A; Coppens P
    J Comput Chem; 2004 May; 25(7):921-34. PubMed ID: 15027105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory.
    Lao KU; Schäffer R; Jansen G; Herbert JM
    J Chem Theory Comput; 2015 Jun; 11(6):2473-86. PubMed ID: 26575547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast analytical evaluation of intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density. III. Application to crystal structures via the Ewald and direct summation methods.
    Nguyen D; Macchi P; Volkov A
    Acta Crystallogr A Found Adv; 2020 Nov; 76(Pt 6):630-651. PubMed ID: 33125348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Electrostatic Interactions in IFIT5-RNA Complexes Predicted by the UBDB+EPMM Method.
    Budniak UA; Karolak NK; Kulik M; Młynarczyk K; Górna MW; Dominiak PM
    J Phys Chem B; 2022 Nov; 126(45):9152-9167. PubMed ID: 36326196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Verification of structural and electrostatic properties obtained by the use of different pseudoatom databases.
    Bąk JM; Domagała S; Hübschle C; Jelsch C; Dittrich B; Dominiak PM
    Acta Crystallogr A; 2011 Mar; 67(Pt 2):141-53. PubMed ID: 21325717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NENCI-2021. I. A large benchmark database of non-equilibrium non-covalent interactions emphasizing close intermolecular contacts.
    Sparrow ZM; Ernst BG; Joo PT; Lao KU; DiStasio RA
    J Chem Phys; 2021 Nov; 155(18):184303. PubMed ID: 34773949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical 3D electron diffraction electrostatic potential maps of proteins modeled with a multipolar pseudoatom data bank.
    Kulik M; Chodkiewicz ML; Dominiak PM
    Acta Crystallogr D Struct Biol; 2022 Aug; 78(Pt 8):1010-1020. PubMed ID: 35916225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X-ray crystallography: application of a theoretical databank of aspherical atoms and a symmetry-adapted perturbation theory-based set of interatomic potentials.
    Li X; Volkov AV; Szalewicz K; Coppens P
    Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):639-47. PubMed ID: 16699191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fixed multi-site interaction charge model for an accurate prediction of the QM/MM interactions.
    Wang X; Li X; He X; Zhang JZH
    Phys Chem Chem Phys; 2021 Sep; 23(37):21001-21012. PubMed ID: 34522933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extension of the transferable aspherical pseudoatom data bank for the comparison of molecular electrostatic potentials in structure-activity studies.
    Kumar P; Gruza B; Bojarowski SA; Dominiak PM
    Acta Crystallogr A Found Adv; 2019 Mar; 75(Pt 2):398-408. PubMed ID: 30821272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen bonding and pi-stacking: how reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions.
    Paton RS; Goodman JM
    J Chem Inf Model; 2009 Apr; 49(4):944-55. PubMed ID: 19309094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Induction Phenomena in Intermolecular Interactions with an Ab Initio Force Field.
    Dehez F; Ángyán JG; Gutiérrez IS; Luque FJ; Schulten K; Chipot C
    J Chem Theory Comput; 2007 Nov; 3(6):1914-26. PubMed ID: 26636194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screened Electrostatic Interactions in Molecular Mechanics.
    Wang B; Truhlar DG
    J Chem Theory Comput; 2014 Oct; 10(10):4480-7. PubMed ID: 26588144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved generalized AMBER force field (GAFF) for urea.
    Ozpinar GA; Peukert W; Clark T
    J Mol Model; 2010 Sep; 16(9):1427-40. PubMed ID: 20162312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CLIFF: A component-based, machine-learned, intermolecular force field.
    Schriber JB; Nascimento DR; Koutsoukas A; Spronk SA; Cheney DL; Sherrill CD
    J Chem Phys; 2021 May; 154(18):184110. PubMed ID: 34241025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal Method for Electrostatic Interaction Energies Estimation with Charge Penetration and Easily Attainable Point Charges.
    Bojarowski SA; Kumar P; Wandtke CM; Dittrich B; Dominiak PM
    J Chem Theory Comput; 2018 Dec; 14(12):6336-6345. PubMed ID: 30359528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.