These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24803963)

  • 1. DNA translocation through short nanofluidic channels under asymmetric pulsed electric field.
    Gupta C; Liao WC; Gallego-Perez D; Castro CE; Lee LJ
    Biomicrofluidics; 2014 Mar; 8(2):024114. PubMed ID: 24803963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratcheting Charged Polymers through Symmetric Nanopores Using Pulsed Fields: Designing a Low Pass Filter for Concentrating Polyelectrolytes.
    Qiao L; Szuttor K; Holm C; Slater GW
    Nano Lett; 2023 Feb; 23(4):1343-1349. PubMed ID: 36705546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the transpore velocity control of single-stranded DNA.
    Qian W; Doi K; Uehara S; Morita K; Kawano S
    Int J Mol Sci; 2014 Aug; 15(8):13817-32. PubMed ID: 25116683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetically-driven transport of DNA through focused ion beam milled nanofluidic channels.
    Menard LD; Ramsey JM
    Anal Chem; 2013 Jan; 85(2):1146-53. PubMed ID: 23234458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretching of DNA confined in nanochannels with charged walls.
    Manneschi C; Fanzio P; Ala-Nissila T; Angeli E; Repetto L; Firpo G; Valbusa U
    Biomicrofluidics; 2014 Nov; 8(6):064121. PubMed ID: 25553196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering inlet structures to enhance DNA capture into nanochannels in a polymer nanofluidic device produced via nanoimprint lithography.
    Wu J; Choi J; Uba FI; Soper SA; Park S
    Micro Nano Eng; 2023 Dec; 21():. PubMed ID: 38737190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of temperature gradients on charge transport in asymmetric nanochannels.
    Benneker AM; Wendt HD; Lammertink RGH; Wood JA
    Phys Chem Chem Phys; 2017 Oct; 19(41):28232-28238. PubMed ID: 29027561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optically fabricated gradient nanochannel array to access the translocation dynamics of T4-phage DNA through nanoconfinement.
    Zhang C; Hou J; Zeng Y; Dai L; Zhao W; Jing G; Sun D; Cao Y; Zhang C
    Lab Chip; 2023 Aug; 23(17):3811-3819. PubMed ID: 37490010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanochannel confinement: DNA stretch approaching full contour length.
    Kim Y; Kim KS; Kounovsky KL; Chang R; Jung GY; dePablo JJ; Jo K; Schwartz DC
    Lab Chip; 2011 May; 11(10):1721-9. PubMed ID: 21431167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
    Xia D; Yan J; Hou S
    Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
    Wu J; Chantiwas R; Amirsadeghi A; Soper SA; Park S
    Lab Chip; 2011 Sep; 11(17):2984-9. PubMed ID: 21779601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From the Cover: The dynamics of genomic-length DNA molecules in 100-nm channels.
    Tegenfeldt JO; Prinz C; Cao H; Chou S; Reisner WW; Riehn R; Wang YM; Cox EC; Sturm JC; Silberzan P; Austin RH
    Proc Natl Acad Sci U S A; 2004 Jul; 101(30):10979-83. PubMed ID: 15252203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor.
    Liu Y; Yobas L
    ACS Nano; 2016 Apr; 10(4):3985-94. PubMed ID: 27019102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofluidic charged-coupled devices for controlled DNA transport and separation.
    Nouri R; Guan W
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mass transport properties and applications of nanochannels].
    Li Z; Wu Z; Xia X
    Se Pu; 2020 Oct; 38(10):1189-1196. PubMed ID: 34213115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropic unfolding of DNA molecules in nanofluidic channels.
    Levy SL; Mannion JT; Cheng J; Reccius CH; Craighead HG
    Nano Lett; 2008 Nov; 8(11):3839-44. PubMed ID: 18844427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array.
    Cho J; Dorfman KD
    J Chromatogr A; 2010 Aug; 1217(34):5522-8. PubMed ID: 20650462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast water transport in graphene nanofluidic channels.
    Xie Q; Alibakhshi MA; Jiao S; Xu Z; Hempel M; Kong J; Park HG; Duan C
    Nat Nanotechnol; 2018 Mar; 13(3):238-245. PubMed ID: 29292381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation of nanoparticles through a polymer brush-modified nanochannel.
    Cao Q; Zuo C; Li L; Li Y; Yang Y
    Biomicrofluidics; 2012 Sep; 6(3):34101. PubMed ID: 23853678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.