These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24803963)

  • 41. Dynamics of DNA under pulsed-field gel electrophoresis as analyzed from birefringence rise and decay.
    Mayer P; Sturm J; Heitz C; Weill G
    Electrophoresis; 1993 Apr; 14(4):330-6. PubMed ID: 8500464
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superfast Water Transport Zwitterionic Polymeric Nanofluidic Membrane Reinforced by Metal-Organic Frameworks.
    Ji YL; Gu BX; Xie SJ; Yin MJ; Qian WJ; Zhao Q; Hung WS; Lee KR; Zhou Y; An QF; Gao CJ
    Adv Mater; 2021 Sep; 33(38):e2102292. PubMed ID: 34346108
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulating DNA translocation by a controlled deformation of a PDMS nanochannel device.
    Fanzio P; Manneschi C; Angeli E; Mussi V; Firpo G; Ceseracciu L; Repetto L; Valbusa U
    Sci Rep; 2012; 2():791. PubMed ID: 23145315
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compression and free expansion of single DNA molecules in nanochannels.
    Reccius CH; Mannion JT; Cross JD; Craighead HG
    Phys Rev Lett; 2005 Dec; 95(26):268101. PubMed ID: 16486410
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies.
    van Kan JA; Zhang C; Perumal Malar P; van der Maarel JR
    Biomicrofluidics; 2012 Sep; 6(3):36502. PubMed ID: 23898358
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Excluded volume effect on confined polymer translocation through a short nanochannel.
    Xie Y; Yang H; Yu H; Shi Q; Wang X; Chen J
    J Chem Phys; 2006 May; 124(17):174906. PubMed ID: 16689603
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A device for performing lateral conductance measurements on individual double-stranded DNA molecules.
    Menard LD; Mair CE; Woodson ME; Alarie JP; Ramsey JM
    ACS Nano; 2012 Oct; 6(10):9087-94. PubMed ID: 22950784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrochromic Nanochannels for Visual Nanofluidic Manipulation in Integrated Ionic Circuits.
    Hao Z; Zhou T; Xiao T; Gong H; Zhang Q; Wang H; Zhai J
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57314-57321. PubMed ID: 33301676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuning water transport through nanochannels by changing the direction of an external electric field.
    Zhu J; Lan Y; Du H; Zhang Y; Su J
    Phys Chem Chem Phys; 2016 Jul; 18(27):17991-6. PubMed ID: 27328375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ionic Transport and Robust Switching Properties of the Confined Self-Assembled Block Copolymer/Homopolymer in Asymmetric Nanochannels.
    Wang J; Liu L; Yan G; Li Y; Gao Y; Tian Y; Jiang L
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14507-14517. PubMed ID: 33733727
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electric Field-Controlled Ion Transport In TiO2 Nanochannel.
    Li D; Jing W; Li S; Shen H; Xing W
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11294-300. PubMed ID: 25961963
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasensitive and Label-Free Detection of Copper Ions by GHK-Modified Asymmetric Nanochannels.
    An P; Zhang Z; Yang J; Wang T; Wang Z; Sun CL; Qin C; Li J
    Anal Chem; 2023 Sep; 95(36):13456-13462. PubMed ID: 37624577
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solute separation in nanofluidic channels: pressure-driven or electric field-driven?
    Xuan X; Li D
    Electrophoresis; 2007 Feb; 28(4):627-34. PubMed ID: 17304496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-throughput DNA separation in nanofilter arrays.
    Choi S; Kim JM; Ahn KH; Lee SJ
    Electrophoresis; 2014 Aug; 35(15):2068-77. PubMed ID: 24930709
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineered Nanochannel Membranes with Diode-like Behavior for Energy Conversion over a Wide pH Range.
    Sui X; Zhang Z; Li C; Gao L; Zhao Y; Yang L; Wen L; Jiang L
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):23815-23821. PubMed ID: 30035526
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrical Field Regulation of Ion Transport in Polyethylene Terephthalate Nanochannels.
    Li Y; Du G; Mao G; Guo J; Zhao J; Wu R; Liu W
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38055-38060. PubMed ID: 31553570
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced nanochannel translocation and localization of genomic DNA molecules using three-dimensional nanofunnels.
    Zhou J; Wang Y; Menard LD; Panyukov S; Rubinstein M; Ramsey JM
    Nat Commun; 2017 Oct; 8(1):807. PubMed ID: 28993619
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stationary chemical gradients for concentration gradient-based separation and focusing in nanofluidic channels.
    Hsu WL; Inglis DW; Jeong H; Dunstan DE; Davidson MR; Goldys EM; Harvie DJ
    Langmuir; 2014 May; 30(18):5337-48. PubMed ID: 24725102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Directly Accessible and Transferrable Nanofluidic Systems for Biomolecule Manipulation.
    Kim YS; Dincau BM; Kwon YT; Kim JH; Yeo WH
    ACS Sens; 2019 May; 4(5):1417-1423. PubMed ID: 31062586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.