These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Multi-step manipulations of PMMA submicron particles using dielectrophoresis. Chuang CH; Huang YW Electrophoresis; 2013 Dec; 34(22-23):3111-8. PubMed ID: 24038067 [TBL] [Abstract][Full Text] [Related]
4. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays. Madiyar FR; Haller SL; Farooq O; Rothenburg S; Culbertson C; Li J Electrophoresis; 2017 Jun; 38(11):1515-1525. PubMed ID: 28211116 [TBL] [Abstract][Full Text] [Related]
5. Optimization of upstream particle concentration from flow using AC electro-osmosis and dielectrophoresis. Smith de Diego A; Griffiths OV; Johnson MP; de Montis M; Hughes MP Biomicrofluidics; 2024 Mar; 18(2):024105. PubMed ID: 38585002 [TBL] [Abstract][Full Text] [Related]
6. Mapping alternating current electroosmotic flow at the dielectrophoresis crossover frequency of a colloidal probe. Wang J; Wei MT; Cohen JA; Ou-Yang HD Electrophoresis; 2013 Jul; 34(13):1915-21. PubMed ID: 23616351 [TBL] [Abstract][Full Text] [Related]
7. Continuous Particle Trapping, Switching, and Sorting Utilizing a Combination of Dielectrophoresis and Alternating Current Electrothermal Flow. Sun H; Ren Y; Hou L; Tao Y; Liu W; Jiang T; Jiang H Anal Chem; 2019 May; 91(9):5729-5738. PubMed ID: 30938976 [TBL] [Abstract][Full Text] [Related]
8. Rapid and selective concentration of microparticles in an optoelectrofluidic platform. Hwang H; Park JK Lab Chip; 2009 Jan; 9(2):199-206. PubMed ID: 19107274 [TBL] [Abstract][Full Text] [Related]
9. The construction of an individually addressable cell array for selective patterning and electroporation. Xu Y; Yao H; Wang L; Xing W; Cheng J Lab Chip; 2011 Jul; 11(14):2417-23. PubMed ID: 21625729 [TBL] [Abstract][Full Text] [Related]
10. Optoelectrofluidic field separation based on light-intensity gradients. Lee S; Park HJ; Yoon JS; Kang KH Biomicrofluidics; 2010 Jul; 4(3):. PubMed ID: 20697461 [TBL] [Abstract][Full Text] [Related]
11. Dielectrophoretic manipulation of particles in a modified microfluidic H filter with multi-insulating blocks. Lewpiriyawong N; Yang C; Lam YC Biomicrofluidics; 2008 Aug; 2(3):34105. PubMed ID: 19693372 [TBL] [Abstract][Full Text] [Related]
12. High-throughput dielectrophoretic manipulation of bioparticles within fluids through biocompatible three-dimensional microelectrode array. Ma W; Shi T; Tang Z; Liu S; Malik R; Zhang L Electrophoresis; 2011 Feb; 32(5):494-505. PubMed ID: 21298672 [TBL] [Abstract][Full Text] [Related]
13. Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip. Wang Y; Tong N; Li F; Zhao K; Wang D; Niu Y; Xu F; Cheng J; Wang J Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677221 [TBL] [Abstract][Full Text] [Related]
14. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array. Wu Y; Ren Y; Tao Y; Hou L; Jiang H Anal Chem; 2018 Oct; 90(19):11461-11469. PubMed ID: 30192521 [TBL] [Abstract][Full Text] [Related]
15. Enhanced penetration of fluoride particles into bovine enamel by combining dielectrophoresis with AC electroosmosis. Ivanoff CS; Swami NS; Hottel TL; Garcia-Godoy F Electrophoresis; 2013 Nov; 34(20-21):2945-55. PubMed ID: 23897721 [TBL] [Abstract][Full Text] [Related]
16. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping. Heida T Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336 [TBL] [Abstract][Full Text] [Related]
17. On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes. Melvin EM; Moore BR; Gilchrist KH; Grego S; Velev OD Biomicrofluidics; 2011 Sep; 5(3):34113-3411317. PubMed ID: 22662040 [TBL] [Abstract][Full Text] [Related]
18. The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Martinez-Duarte R; Gorkin RA; Abi-Samra K; Madou MJ Lab Chip; 2010 Apr; 10(8):1030-43. PubMed ID: 20358111 [TBL] [Abstract][Full Text] [Related]
19. Integrated microfluidic platform with electrohydrodynamic focusing and a carbon-nanotube-based field-effect transistor immunosensor for continuous, selective, and label-free quantification of bacteria. Han CH; Jang J Lab Chip; 2021 Jan; 21(1):184-195. PubMed ID: 33283832 [TBL] [Abstract][Full Text] [Related]