BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24804458)

  • 1. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers.
    Kuehn KA; Francoeur SN; Findlay RH; Neely RK
    Ecology; 2014 Mar; 95(3):749-62. PubMed ID: 24804458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periphytic photosynthetic stimulation of extracellular enzyme activity in aquatic microbial communities associated with decaying typha litter.
    Francoeur SN; Schaecher M; Neely RK; Kuehn KA
    Microb Ecol; 2006 Nov; 52(4):662-9. PubMed ID: 17082997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labile carbon 'primes' fungal use of nitrogen from submerged leaf litter.
    Soares M; Kritzberg ES; Rousk J
    FEMS Microbiol Ecol; 2017 Sep; 93(9):. PubMed ID: 28957586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming.
    Halvorson HM; Barry JR; Lodato MB; Findlay RH; Francoeur SN; Kuehn KA
    Funct Ecol; 2019 Jan; 33(1):188-201. PubMed ID: 31673197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diatoms Reduce Decomposition of and Fungal Abundance on Less Recalcitrant Leaf Litter via Negative Priming.
    Feckler A; Baudy-Groh P; Friedrichs L; Gonçalves S; Lüderwald S; Risse-Buhl U; Bundschuh M
    Microb Ecol; 2023 Nov; 86(4):2674-2686. PubMed ID: 37505287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect?
    Danger M; Cornut J; Chauvet E; Chavez P; Elger A; Lecerf A
    Ecology; 2013 Jul; 94(7):1604-13. PubMed ID: 23951720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brown meets green: light and nutrients alter detritivore assimilation of microbial nutrients from leaf litter.
    Price TL; Harper J; Francoeur SN; Halvorson HM; Kuehn KA
    Ecology; 2021 Jun; 102(6):e03358. PubMed ID: 33811660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh.
    Flury S; Gessner MO
    Appl Environ Microbiol; 2011 Feb; 77(3):803-9. PubMed ID: 21148695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonism between bacteria and fungi on decomposing aquatic plant litter.
    Mille-Lindblom C; Tranvik LJ
    Microb Ecol; 2003 Feb; 45(2):173-82. PubMed ID: 12545315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams.
    Duarte S; Cássio F; Ferreira V; Canhoto C; Pascoal C
    Microb Ecol; 2016 Aug; 72(2):263-76. PubMed ID: 27193000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.
    Mora-Gómez J; Elosegi A; Duarte S; Cássio F; Pascoal C; Romaní AM
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh.
    Buesing N; Gessner MO
    Appl Environ Microbiol; 2006 Jan; 72(1):596-605. PubMed ID: 16391096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid lipid nanoparticles affect microbial colonization and enzymatic activity throughout the decomposition of alder leaves in freshwater microcosms.
    Sampaio AC; Mendes RJ; Castro PG; Silva AM
    Ecotoxicol Environ Saf; 2017 Jan; 135():375-380. PubMed ID: 27776303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal importance extends beyond litter decomposition in experimental early-successional streams.
    Frossard A; Gerull L; Mutz M; Gessner MO
    Environ Microbiol; 2012 Nov; 14(11):2971-83. PubMed ID: 22958100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.
    Mora-Gómez J; Duarte S; Cássio F; Pascoal C; Romaní AM
    Sci Total Environ; 2018 Apr; 621():486-496. PubMed ID: 29195197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality.
    Fabian J; Zlatanovic S; Mutz M; Premke K
    ISME J; 2017 Feb; 11(2):415-425. PubMed ID: 27983721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microbial contribution to litter decomposition and plant growth.
    Zhang C; de Pasquale S; Hartman K; Stanley CE; Berendsen RL; van der Heijden MGA
    Environ Microbiol Rep; 2024 Feb; 16(1):e13205. PubMed ID: 38018445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community composition and function across an arctic tundra landscape.
    Zak DR; Kling GW
    Ecology; 2006 Jul; 87(7):1659-70. PubMed ID: 16922317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High diversity of fungi may mitigate the impact of pollution on plant litter decomposition in streams.
    Duarte S; Pascoal C; Cássio F
    Microb Ecol; 2008 Nov; 56(4):688-95. PubMed ID: 18443846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.