These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24805039)

  • 1. Tackling learning intractability through topological organization and regulation of cortical networks.
    Thangavelautham J; D'Eleuterio GM
    IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):552-64. PubMed ID: 24805039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of bioinspired models for pattern recognition in biomimetic systems.
    Pioggia G; Ferro M; Francesco FD; Ahluwalia A; De Rossi D
    Bioinspir Biomim; 2008 Mar; 3():016004. PubMed ID: 18364563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
    Ellefsen KO; Mouret JB; Clune J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004128. PubMed ID: 25837826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural network structure for spatio-temporal long-term memory.
    Nguyen VA; Starzyk JA; Goh WB; Jachyra D
    IEEE Trans Neural Netw Learn Syst; 2012 Jun; 23(6):971-83. PubMed ID: 24806767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiking perceptrons.
    Rowcliffe P; Feng J; Buxton H
    IEEE Trans Neural Netw; 2006 May; 17(3):803-7. PubMed ID: 16722183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-inspired design strategies for central pattern generator control in modular robotics.
    Herrero-Carrón F; Rodríguez FB; Varona P
    Bioinspir Biomim; 2011 Mar; 6(1):016006. PubMed ID: 21335644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the insect mushroom bodies: application to a delayed match-to-sample task.
    Arena P; Patané L; Stornanti V; Termini PS; Zäpf B; Strauss R
    Neural Netw; 2013 May; 41():202-11. PubMed ID: 23246431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-organizing spiking neural model for learning fault-tolerant spatio-motor transformations.
    Srinivasa N; Cho Y
    IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1526-38. PubMed ID: 24807999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supervised learning through neuronal response modulation.
    Swinehart CD; Abbott LF
    Neural Comput; 2005 Mar; 17(3):609-31. PubMed ID: 15802008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global almost sure self-synchronization of Hopfield neural networks with randomly switching connections.
    Liu B; Lu W; Chen T
    Neural Netw; 2011 Apr; 24(3):305-10. PubMed ID: 21277163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically plausible learning in neural networks: a lesson from bacterial chemotaxis.
    Shimansky YP
    Biol Cybern; 2009 Dec; 101(5-6):379-85. PubMed ID: 19844738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensional reduction for reward-based learning.
    Swinehart CD; Abbott LF
    Network; 2006 Sep; 17(3):235-52. PubMed ID: 17162613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency modulation of large oscillatory neural networks.
    Wyffels F; Li J; Waegeman T; Schrauwen B; Jaeger H
    Biol Cybern; 2014 Apr; 108(2):145-57. PubMed ID: 24515094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain architecture: a design for natural computation.
    Kaiser M
    Philos Trans A Math Phys Eng Sci; 2007 Dec; 365(1861):3033-45. PubMed ID: 17855223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of neural models for walking control.
    Reeve R; Hallam J
    IEEE Trans Neural Netw; 2005 May; 16(3):733-42. PubMed ID: 15941000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.