These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 24805044)
1. Fast and efficient second-order method for training radial basis function networks. Xie T; Yu H; Hewlett J; Rózycki P; Wilamowski B IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):609-19. PubMed ID: 24805044 [TBL] [Abstract][Full Text] [Related]
2. A new discrete-continuous algorithm for radial basis function networks construction. Zhang L; Li K; He H; Irwin GW IEEE Trans Neural Netw Learn Syst; 2013 Nov; 24(11):1785-98. PubMed ID: 24808612 [TBL] [Abstract][Full Text] [Related]
3. Improved computation for Levenberg-Marquardt training. Wilamowski BM; Yu H IEEE Trans Neural Netw; 2010 Jun; 21(6):930-7. PubMed ID: 20409991 [TBL] [Abstract][Full Text] [Related]
4. Sensitivity analysis applied to the construction of radial basis function networks. Shi D; Yeung DS; Gao J Neural Netw; 2005 Sep; 18(7):951-7. PubMed ID: 15939573 [TBL] [Abstract][Full Text] [Related]
6. Optimization of neural networks using variable structure systems. Mohseni SA; Tan AH IEEE Trans Syst Man Cybern B Cybern; 2012 Dec; 42(6):1645-53. PubMed ID: 22665508 [TBL] [Abstract][Full Text] [Related]
7. A new algorithm for online structure and parameter adaptation of RBF networks. Alexandridis A; Sarimveis H; Bafas G Neural Netw; 2003 Sep; 16(7):1003-17. PubMed ID: 14692635 [TBL] [Abstract][Full Text] [Related]
8. An incremental design of radial basis function networks. Yu H; Reiner PD; Xie T; Bartczak T; Wilamowski BM IEEE Trans Neural Netw Learn Syst; 2014 Oct; 25(10):1793-803. PubMed ID: 25203995 [TBL] [Abstract][Full Text] [Related]
9. A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures. Wang GJ; Chen CC IEEE Trans Neural Netw; 1996; 7(3):768-75. PubMed ID: 18263473 [TBL] [Abstract][Full Text] [Related]
10. An ART-based construction of RBF networks. Lee SJ; Hou CL IEEE Trans Neural Netw; 2002; 13(6):1308-21. PubMed ID: 18244529 [TBL] [Abstract][Full Text] [Related]
11. Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization. Alexandridis A; Chondrodima E; Sarimveis H IEEE Trans Neural Netw Learn Syst; 2013 Feb; 24(2):219-30. PubMed ID: 24808277 [TBL] [Abstract][Full Text] [Related]
12. Effects of moving the center's in an RBF network. Panchapakesan C; Palaniswami M; Ralph D; Manzie C IEEE Trans Neural Netw; 2002; 13(6):1299-307. PubMed ID: 18244528 [TBL] [Abstract][Full Text] [Related]
13. A variable projection approach for efficient estimation of RBF-ARX model. Gan M; Li HX; Peng H IEEE Trans Cybern; 2015 Mar; 45(3):476-85. PubMed ID: 24988599 [TBL] [Abstract][Full Text] [Related]
14. Efficient calculation of the Gauss-Newton approximation of the Hessian matrix in neural networks. Fairbank M; Alonso E Neural Comput; 2012 Mar; 24(3):607-10. PubMed ID: 22168563 [TBL] [Abstract][Full Text] [Related]
15. Selecting radial basis function network centers with recursive orthogonal least squares training. Gomm JB; Yu DL IEEE Trans Neural Netw; 2000; 11(2):306-14. PubMed ID: 18249762 [TBL] [Abstract][Full Text] [Related]
16. Convergent decomposition techniques for training RBF neural networks. Buzzi C; Grippo L; Sciandrone M Neural Comput; 2001 Aug; 13(8):1891-920. PubMed ID: 11506675 [TBL] [Abstract][Full Text] [Related]
17. A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Vuković N; Miljković Z Neural Netw; 2013 Oct; 46():210-26. PubMed ID: 23811384 [TBL] [Abstract][Full Text] [Related]
18. A medical diagnostic tool based on radial basis function classifiers and evolutionary simulated annealing. Alexandridis A; Chondrodima E J Biomed Inform; 2014 Jun; 49():61-72. PubMed ID: 24662274 [TBL] [Abstract][Full Text] [Related]
19. Efficient construction of sparse radial basis function neural networks using L Qian X; Huang H; Chen X; Huang T Neural Netw; 2017 Oct; 94():239-254. PubMed ID: 28806717 [TBL] [Abstract][Full Text] [Related]
20. Robust radial basis function neural networks. Lee CC; Chung PC; Tsai JR; Chang CI IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):674-85. PubMed ID: 18252348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]