BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24805064)

  • 1. Integrative approaches for predicting in vivo effects of chemicals from their structural descriptors and the results of short-term biological assays.
    Low YS; Sedykh AY; Rusyn I; Tropsha A
    Curr Top Med Chem; 2014; 14(11):1356-64. PubMed ID: 24805064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity.
    Sedykh A; Zhu H; Tang H; Zhang L; Richard A; Rusyn I; Tropsha A
    Environ Health Perspect; 2011 Mar; 119(3):364-70. PubMed ID: 20980217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive modeling of chemical hazard by integrating numerical descriptors of chemical structures and short-term toxicity assay data.
    Rusyn I; Sedykh A; Low Y; Guyton KZ; Tropsha A
    Toxicol Sci; 2012 May; 127(1):1-9. PubMed ID: 22387746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents.
    Zhu H; Ye L; Richard A; Golbraikh A; Wright FA; Rusyn I; Tropsha A
    Environ Health Perspect; 2009 Aug; 117(8):1257-64. PubMed ID: 19672406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From QSAR to QSIIR: searching for enhanced computational toxicology models.
    Zhu H
    Methods Mol Biol; 2013; 930():53-65. PubMed ID: 23086837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR Modeling of ToxCast Assays Relevant to the Molecular Initiating Events of AOPs Leading to Hepatic Steatosis.
    Gadaleta D; Manganelli S; Roncaglioni A; Toma C; Benfenati E; Mombelli E
    J Chem Inf Model; 2018 Aug; 58(8):1501-1517. PubMed ID: 29949360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity.
    Zhu H; Rusyn I; Richard A; Tropsha A
    Environ Health Perspect; 2008 Apr; 116(4):506-13. PubMed ID: 18414635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outliers: their origin and use in the classification of molecular mechanisms of toxicity.
    Lipnick RL
    Sci Total Environ; 1991 Dec; 109-110():131-53. PubMed ID: 1815349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.
    Martin E; Mukherjee P; Sullivan D; Jansen J
    J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Public databases supporting computational toxicology.
    Judson R
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):218-31. PubMed ID: 20574898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive toxicology: benchmarking molecular descriptors and statistical methods.
    Feng J; Lurati L; Ouyang H; Robinson T; Wang Y; Yuan S; Young SS
    J Chem Inf Comput Sci; 2003; 43(5):1463-70. PubMed ID: 14502479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D- quantitative structure-activity relationship modeling: making a comeback.
    Fourches D; Ash J
    Expert Opin Drug Discov; 2019 Dec; 14(12):1227-1235. PubMed ID: 31513441
    [No Abstract]   [Full Text] [Related]  

  • 15. Integrating Drug's Mode of Action into Quantitative Structure-Activity Relationships for Improved Prediction of Drug-Induced Liver Injury.
    Wu L; Liu Z; Auerbach S; Huang R; Chen M; McEuen K; Xu J; Fang H; Tong W
    J Chem Inf Model; 2017 Apr; 57(4):1000-1006. PubMed ID: 28350954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling first report on in silico modeling of aquatic toxicity of organic chemicals to Labeo rohita (Rohu) employing QSAR and q-RASAR.
    Gallagher A; Kar S
    Chemosphere; 2024 Feb; 349():140810. PubMed ID: 38029938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches.
    Low Y; Uehara T; Minowa Y; Yamada H; Ohno Y; Urushidani T; Sedykh A; Muratov E; Kuz'min V; Fourches D; Zhu H; Rusyn I; Tropsha A
    Chem Res Toxicol; 2011 Aug; 24(8):1251-62. PubMed ID: 21699217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic Colors: The Use of Deep Learning for Predicting Toxicity of Compounds Merely from Their Graphic Images.
    Fernandez M; Ban F; Woo G; Hsing M; Yamazaki T; LeBlanc E; Rennie PS; Welch WJ; Cherkasov A
    J Chem Inf Model; 2018 Aug; 58(8):1533-1543. PubMed ID: 30063345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Structure-Activity Relationships of Aquatic Narcosis: A Review.
    Adhikari C; Mishra BK
    Curr Comput Aided Drug Des; 2018; 14(1):7-28. PubMed ID: 28699497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical topology and ecotoxicology.
    Sabljić A
    Sci Total Environ; 1991 Dec; 109-110():197-220. PubMed ID: 1815352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.