BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24805251)

  • 1. The ribosome can prevent aggregation of partially folded protein intermediates: studies using the Escherichia coli ribosome.
    Pathak BK; Mondal S; Ghosh AN; Barat C
    PLoS One; 2014; 9(5):e96425. PubMed ID: 24805251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome.
    Mondal S; Pathak BK; Ray S; Barat C
    PLoS One; 2014; 9(7):e101293. PubMed ID: 25000563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs.
    Chakraborty B; Bhakta S; Sengupta J
    PLoS One; 2016; 11(4):e0153928. PubMed ID: 27099964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequestration of Ribosome during Protein Aggregate Formation: Contribution of ribosomal RNA.
    Pathak BK; Mondal S; Banerjee S; Ghosh AN; Barat C
    Sci Rep; 2017 Feb; 7():42017. PubMed ID: 28169307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reshaping of the conformational search of a protein by the chaperone trigger factor.
    Mashaghi A; Kramer G; Bechtluft P; Zachmann-Brand B; Driessen AJ; Bukau B; Tans SJ
    Nature; 2013 Aug; 500(7460):98-101. PubMed ID: 23831649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L23 protein functions as a chaperone docking site on the ribosome.
    Kramer G; Rauch T; Rist W; Vorderwülbecke S; Patzelt H; Schulze-Specking A; Ban N; Deuerling E; Bukau B
    Nature; 2002 Sep; 419(6903):171-4. PubMed ID: 12226666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 23S rRNA nucleotides in the peptidyl transferase center are essential for tryptophanase operon induction.
    Yang R; Cruz-Vera LR; Yanofsky C
    J Bacteriol; 2009 Jun; 191(11):3445-50. PubMed ID: 19329641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of ribosome assisted protein folding: a new insight into rRNA functions.
    Samanta D; Das A; Bhattacharya A; Basu A; Das D; DasGupta C
    Biochem Biophys Res Commun; 2009 Jun; 384(2):137-40. PubMed ID: 19401192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins.
    Ferbitz L; Maier T; Patzelt H; Bukau B; Deuerling E; Ban N
    Nature; 2004 Sep; 431(7008):590-6. PubMed ID: 15334087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of a soluble protein into a potent chaperone in vivo.
    Kwon SB; Ryu K; Son A; Jeong H; Lim KH; Kim KH; Seong BL; Choi SI
    Sci Rep; 2019 Feb; 9(1):2735. PubMed ID: 30804538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding.
    Hoffmann A; Becker AH; Zachmann-Brand B; Deuerling E; Bukau B; Kramer G
    Mol Cell; 2012 Oct; 48(1):63-74. PubMed ID: 22921937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli.
    Semrad K; Green R; Schroeder R
    RNA; 2004 Dec; 10(12):1855-60. PubMed ID: 15525706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial RF3 senses chaperone function in co-translational folding.
    Zhao L; Castanié-Cornet MP; Kumar S; Genevaux P; Hayer-Hartl M; Hartl FU
    Mol Cell; 2021 Jul; 81(14):2914-2928.e7. PubMed ID: 34107307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PPIase domain of trigger factor acts as auxiliary chaperone site to assist the folding of protein substrates bound to the crevice of trigger factor.
    Liu CP; Zhou QM; Fan DJ; Zhou JM
    Int J Biochem Cell Biol; 2010 Jun; 42(6):890-901. PubMed ID: 20096367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.
    Yoshida H; Yamamoto H; Uchiumi T; Wada A
    Genes Cells; 2004 Apr; 9(4):271-8. PubMed ID: 15066119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatility of trigger factor interactions with ribosome-nascent chain complexes.
    Lakshmipathy SK; Gupta R; Pinkert S; Etchells SA; Hartl FU
    J Biol Chem; 2010 Sep; 285(36):27911-23. PubMed ID: 20595383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding?
    Craig EA; Eisenman HC; Hundley HA
    Curr Opin Microbiol; 2003 Apr; 6(2):157-62. PubMed ID: 12732306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tethering creates unusual kinetics for ribosome-associated chaperones with nascent chains.
    Witt SN
    Protein Pept Lett; 2009; 16(6):631-4. PubMed ID: 19519521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Microscale Protein Aggregation Suppression Assay: A Method for Evaluating the Holdase Activity of Chaperones.
    Tonui R; John RO; Edkins AL
    Methods Mol Biol; 2023; 2693():113-123. PubMed ID: 37540431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.