These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2480533)

  • 1. Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex.
    Wedler FC; Ley BW; Grippo AA
    Neurochem Res; 1989 Nov; 14(11):1129-35. PubMed ID: 2480533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cu(II) and Zn(II) ions alter the dynamics and distribution of Mn(II) in cultured chick glial cells.
    Wedler FC; Ley BW
    Neurochem Res; 1990 Dec; 15(12):1221-8. PubMed ID: 2097514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Ca(II) ions on Mn(II) dynamics in chick glia and rat astrocytes: potential regulation of glutamine synthetase.
    Wedler FC; Vichnin MC; Ley BW; Tholey G; Ledig M; Copin JC
    Neurochem Res; 1994 Feb; 19(2):145-51. PubMed ID: 7910379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex.
    Tholey G; Ledig M; Mandel P; Sargentini L; Frivold AH; Leroy M; Grippo AA; Wedler FC
    Neurochem Res; 1988 Jan; 13(1):45-50. PubMed ID: 2897087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manganese distribution across the blood-brain barrier. II. Manganese efflux from the brain does not appear to be carrier mediated.
    Yokel RA; Crossgrove JS; Bukaveckas BL
    Neurotoxicology; 2003 Jan; 24(1):15-22. PubMed ID: 12564378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic, ESR, and trapping evidence for in vivo binding of Mn(II) to glutamine synthetase in brain cells.
    Wedler FC; Ley BW
    Neurochem Res; 1994 Feb; 19(2):139-44. PubMed ID: 7910378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the uncoupler carbonyl cyanide m-chlorophenylhydrazone on K+ transport, ATP level and intracellular pH of Chlorella fusca.
    Tromballa HW
    Biochim Biophys Acta; 1981 Jun; 636(1):98-103. PubMed ID: 7284347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine transport by cultured glial cells from chick embryo brain.
    Thampy KG; Barnes EM
    Arch Biochem Biophys; 1983 Feb; 220(2):340-6. PubMed ID: 6824327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manganese uptake and release by cultured human hepato-carcinoma (Hep-G2) cells.
    Finley JW
    Biol Trace Elem Res; 1998; 64(1-3):101-18. PubMed ID: 9845466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain.
    Drapeau P; Nachshen DA
    J Physiol; 1984 Mar; 348():493-510. PubMed ID: 6325673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of managanese citrate as well as manganese and manganese transferrin.
    Crossgrove JS; Allen DD; Bukaveckas BL; Rhineheimer SS; Yokel RA
    Neurotoxicology; 2003 Jan; 24(1):3-13. PubMed ID: 12564377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manganese uptake and efflux in cultured rat astrocytes.
    Aschner M; Gannon M; Kimelberg HK
    J Neurochem; 1992 Feb; 58(2):730-5. PubMed ID: 1729413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saturable transport of manganese(II) across blood-nerve barrier of rat peripheral nerve.
    Wadhwani KC; Murphy VA; Smith QR; Rapoport SI
    Am J Physiol; 1992 Feb; 262(2 Pt 2):R284-8. PubMed ID: 1539737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for non-transferrin-mediated uptake and release of iron and manganese in glial cell cultures from hypotransferrinemic mice.
    Takeda A; Devenyi A; Connor JR
    J Neurosci Res; 1998 Feb; 51(4):454-62. PubMed ID: 9514199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular acidosis protects cultured hepatocytes from the toxic consequences of a loss of mitochondrial energization.
    Masaki N; Thomas AP; Hoek JB; Farber JL
    Arch Biochem Biophys; 1989 Jul; 272(1):152-61. PubMed ID: 2735760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of Ca2+ and Mn2+ by mitochondria from rat liver, heart and brain.
    Konji V; Montag A; Sandri G; Nordenbrand K; Ernster L
    Biochimie; 1985 Dec; 67(12):1241-50. PubMed ID: 4096906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of cytosolic calcium activity during low sodium exposure in cultured chick heart cells.
    Kim D; Okada A; Smith TW
    Circ Res; 1987 Jul; 61(1):29-41. PubMed ID: 3608111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake, metabolism, and release of [3H]-histamine by glial cells in primary cultures of chicken cerebral hemispheres.
    Huszti Z; Rimanóczy A; Juhász A; Magyar K
    Glia; 1990; 3(3):159-68. PubMed ID: 2141592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport.
    Winkler E; Klingenberg M
    Eur J Biochem; 1992 Jul; 207(1):135-45. PubMed ID: 1378400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain uptake, retention, and efflux of aluminum and manganese.
    Yokel RA
    Environ Health Perspect; 2002 Oct; 110 Suppl 5(Suppl 5):699-704. PubMed ID: 12426115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.