These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 24805351)
1. In vitro quantification of time dependent thrombus size using magnetic resonance imaging and computational simulations of thrombus surface shear stresses. Taylor JO; Witmer KP; Neuberger T; Craven BA; Meyer RS; Deutsch S; Manning KB J Biomech Eng; 2014 Jul; 136(7):. PubMed ID: 24805351 [TBL] [Abstract][Full Text] [Related]
2. Development of a computational model for macroscopic predictions of device-induced thrombosis. Taylor JO; Meyer RS; Deutsch S; Manning KB Biomech Model Mechanobiol; 2016 Dec; 15(6):1713-1731. PubMed ID: 27169403 [TBL] [Abstract][Full Text] [Related]
3. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. van Ooij P; Potters WV; Guédon A; Schneiders JJ; Marquering HA; Majoie CB; vanBavel E; Nederveen AJ J Magn Reson Imaging; 2013 Oct; 38(4):876-84. PubMed ID: 23417769 [TBL] [Abstract][Full Text] [Related]
4. Computational fluid dynamics characterization of pulsatile flow in central and Sano shunts connected to the pulmonary arteries: importance of graft angulation on shear stress-induced, platelet-mediated thrombosis. Ascuitto R; Ross-Ascuitto N; Guillot M; Celestin C Interact Cardiovasc Thorac Surg; 2017 Sep; 25(3):414-421. PubMed ID: 28525548 [TBL] [Abstract][Full Text] [Related]
5. Simulation of thrombus formation in shear flows using Lattice Boltzmann Method. Tamagawa M; Kaneda H; Hiramoto M; Nagahama S Artif Organs; 2009 Aug; 33(8):604-10. PubMed ID: 19624585 [TBL] [Abstract][Full Text] [Related]
6. In vitro real-time magnetic resonance imaging for quantification of thrombosis. Yang L; Neuberger T; Manning KB MAGMA; 2021 Apr; 34(2):285-295. PubMed ID: 32729094 [TBL] [Abstract][Full Text] [Related]
7. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin. Lucas TC; Tessarolo F; Jakitsch V; Caola I; Brunori G; Nollo G; Huebner R Artif Organs; 2014 Jul; 38(7):556-65. PubMed ID: 24341622 [TBL] [Abstract][Full Text] [Related]
8. In vitro and computational thrombosis on artificial surfaces with shear stress. Corbett SC; Ajdari A; Coskun AU; N-Hashemi H Artif Organs; 2010 Jul; 34(7):561-9. PubMed ID: 20497159 [TBL] [Abstract][Full Text] [Related]
10. Determining possible thrombus sites in an extracorporeal device, using computational fluid dynamics-derived relative residence time. Gorring N; Kark L; Simmons A; Barber T Comput Methods Biomech Biomed Engin; 2015; 18(6):628-34. PubMed ID: 24460127 [TBL] [Abstract][Full Text] [Related]
11. Quantifying turbulent wall shear stress in a subject specific human aorta using large eddy simulation. Lantz J; Gårdhagen R; Karlsson M Med Eng Phys; 2012 Oct; 34(8):1139-48. PubMed ID: 22209366 [TBL] [Abstract][Full Text] [Related]
12. Effect of pulsatile blood flow on thrombosis potential with a step wall transition. Corbett SC; Ajdari A; Coskun AU; Nayeb-Hashemi H ASAIO J; 2010; 56(4):290-5. PubMed ID: 20508499 [TBL] [Abstract][Full Text] [Related]
13. Blood flow through sutured and coupled microvascular anastomoses: a comparative computational study. Wain RA; Whitty JP; Dalal MD; Holmes MC; Ahmed W J Plast Reconstr Aesthet Surg; 2014 Jul; 67(7):951-9. PubMed ID: 24731801 [TBL] [Abstract][Full Text] [Related]
14. Computational model of blood flow in the aorto-coronary bypass graft. Sankaranarayanan M; Chua LP; Ghista DN; Tan YS Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458 [TBL] [Abstract][Full Text] [Related]
15. Shear stress evaluation on blood cells using computational fluid dynamics. Mitoh A; Suebe Y; Kashima T; Koyabu E; Sobu E; Okamoto E; Mitamura Y; Nishimura I Biomed Mater Eng; 2020; 31(3):169-178. PubMed ID: 32597794 [TBL] [Abstract][Full Text] [Related]
16. Computational hemodynamics in the human aorta: a computational fluid dynamics study of three cases with patient-specific geometries and inflow rates. Karmonik C; Bismuth JX; Davies MG; Lumsden AB Technol Health Care; 2008; 16(5):343-54. PubMed ID: 19126973 [TBL] [Abstract][Full Text] [Related]
17. Combined In Silico and In Vitro Approach Predicts Low Wall Shear Stress Regions in a Hemofilter that Correlate with Thrombus Formation In Vivo. Buck AKW; Groszek JJ; Colvin DC; Keller SB; Kensinger C; Forbes R; Karp S; Williams P; Roy S; Fissell WH ASAIO J; 2018; 64(2):211-217. PubMed ID: 28857774 [TBL] [Abstract][Full Text] [Related]
18. Computational study on thrombus formation regulated by platelet glycoprotein and blood flow shear. Kamada H; Imai Y; Nakamura M; Ishikawa T; Yamaguchi T Microvasc Res; 2013 Sep; 89():95-106. PubMed ID: 23743249 [TBL] [Abstract][Full Text] [Related]
19. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment. Walker AM; Johnston CR; Rival DE J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783 [TBL] [Abstract][Full Text] [Related]
20. Dependence of adhesive behavior of neutrophils on local fluid dynamics in a region with recirculating flow. Skilbeck C; Westwood SM; Walker PG; David T; Nash GB Biorheology; 2001; 38(2-3):213-27. PubMed ID: 11381176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]