These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24805772)

  • 21. Aromatic interactions by molecular tweezers and clips in chemical and biological systems.
    Klärner FG; Schrader T
    Acc Chem Res; 2013 Apr; 46(4):967-78. PubMed ID: 22725723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum chemical quantification of weakly polar interaction energies in the TC5b miniprotein.
    Hatfield MP; Palermo NY; Csontos J; Murphy RF; Lovas S
    J Phys Chem B; 2008 Mar; 112(11):3503-8. PubMed ID: 18303883
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stacking interactions of borazine: important stacking at large horizontal displacements and dihydrogen bonding governed by electrostatic potentials of borazine.
    Malenov DP; Aladić AJ; Zarić SD
    Phys Chem Chem Phys; 2019 Nov; 21(44):24554-24564. PubMed ID: 31663532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing phenylalanine/adenine pi-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations.
    Copeland KL; Anderson JA; Farley AR; Cox JR; Tschumper GS
    J Phys Chem B; 2008 Nov; 112(45):14291-5. PubMed ID: 18922031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benzene-pyridine interactions predicted by the effective fragment potential method.
    Smith QA; Gordon MS; Slipchenko LV
    J Phys Chem A; 2011 May; 115(18):4598-609. PubMed ID: 21504175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2:DFT study.
    Hansen N; Kerber T; Sauer J; Bell AT; Keil FJ
    J Am Chem Soc; 2010 Aug; 132(33):11525-38. PubMed ID: 20677757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. π-Stacking, C-H/π, and halogen bonding interactions in bromobenzene and mixed bromobenzene-benzene clusters.
    Reid SA; Nyambo S; Muzangwa L; Uhler B
    J Phys Chem A; 2013 Dec; 117(50):13556-63. PubMed ID: 23978255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum chemical investigations on intraresidue carbonyl-carbonyl contacts in aspartates of high-resolution protein structures.
    Pal TK; Sankararamakrishnan R
    J Phys Chem B; 2010 Jan; 114(2):1038-49. PubMed ID: 20039723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induction of an aromatic six-membered nitrogen ring via cation-pi interaction.
    Duan H; Gong Z; Cheng J; Zhu W; Chen K; Jiang H
    J Phys Chem A; 2006 Nov; 110(44):12236-40. PubMed ID: 17078620
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A density functional theory study of the benzene-water complex.
    Li S; Cooper VR; Thonhauser T; Puzder A; Langreth DC
    J Phys Chem A; 2008 Sep; 112(38):9031-6. PubMed ID: 18729422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atom-bond pairwise additive representation for halide-benzene potential energy surfaces: an ab initio validation study.
    Albertí M; Aguilar A; Lucas JM; Pirani F; Coletti C; Re N
    J Phys Chem A; 2009 Dec; 113(52):14606-14. PubMed ID: 19588987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.
    Ganesan A; Wang F; Falzon C
    J Comput Chem; 2011 Feb; 32(3):525-35. PubMed ID: 20806261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient stacking on protein amide fragments.
    Harder M; Kuhn B; Diederich F
    ChemMedChem; 2013 Mar; 8(3):397-404. PubMed ID: 23355480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stacking interactions of resonance-assisted hydrogen-bridged rings and C
    Blagojević Filipović JP; Hall MB; Zarić SD
    Phys Chem Chem Phys; 2020 Jun; 22(24):13721-13728. PubMed ID: 32529195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes.
    Wang C; Li S; Zhang R; Lin Z
    Nanoscale; 2012 Feb; 4(4):1146-53. PubMed ID: 22095051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding of assembly phenomena by aromatic-aromatic interactions: benzene dimer and the substituted systems.
    Lee EC; Kim D; Jurecka P; Tarakeshwar P; Hobza P; Kim KS
    J Phys Chem A; 2007 May; 111(18):3446-57. PubMed ID: 17429954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of the chirality and curvature of carbon nanostructures on their interaction with aromatics and amino acids.
    Umadevi D; Sastry GN
    Chemphyschem; 2013 Aug; 14(11):2570-8. PubMed ID: 23650176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of non-covalent interactions in (bio)organic molecules using orbital-partitioned localized MP2.
    Grimme S; Mück-Lichtenfeld C; Antony J
    Phys Chem Chem Phys; 2008 Jun; 10(23):3327-34. PubMed ID: 18535714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions.
    del Carmen Fernández-Alonso M; Cañada FJ; Jiménez-Barbero J; Cuevas G
    J Am Chem Soc; 2005 May; 127(20):7379-86. PubMed ID: 15898786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino acid analogues bind to carbon nanotube via π-π interactions: comparison of molecular mechanical and quantum mechanical calculations.
    Yang Z; Wang Z; Tian X; Xiu P; Zhou R
    J Chem Phys; 2012 Jan; 136(2):025103. PubMed ID: 22260616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.