These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24805843)

  • 1. The effect of static and dynamic loading on degradation of PLLA stent fibers.
    Hayman D; Bergerson C; Miller S; Moreno M; Moore JE
    J Biomech Eng; 2014 Aug; 136(8):. PubMed ID: 24805843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study on the in vitro degradation properties of poly(L-lactic acid)/beta-tricalcuim phosphate (PLLA/beta-TCP) scaffold under dynamic loading.
    Kang Y; Yao Y; Yin G; Huang Z; Liao X; Xu X; Zhao G
    Med Eng Phys; 2009 Jun; 31(5):589-94. PubMed ID: 19131266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro hemocompatibility studies of drug-loaded poly-(L-lactic acid) fibers.
    Nguyen KT; Su SH; Sheng A; Wawro D; Schwade ND; Brouse CF; Greilich PE; Tang L; Eberhart RC
    Biomaterials; 2003 Dec; 24(28):5191-201. PubMed ID: 14568436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability.
    Shomura Y; Tanigawa N; Tokuda T; Kariya S; Kojima H; Komemushi A; Sawada S
    Acta Radiol; 2009 May; 50(4):355-9. PubMed ID: 19306137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy.
    Iqbal Q; Bernstein P; Zhu Y; Rahamim J; Cebe P; Staii C
    Nanotechnology; 2015 Mar; 26(10):105702. PubMed ID: 25683087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel biodegradable stent applicable for use in congenital heart disease: bench testing and feasibility results in a rabbit model.
    Veeram Reddy SR; Welch TR; Wang J; Bernstein F; Richardson JA; Forbess JM; Nugent AW
    Catheter Cardiovasc Interv; 2014 Feb; 83(3):448-56. PubMed ID: 23592519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro flexural properties of hydroxyapatite and self-reinforced poly(L-lactic acid).
    Wright-Charlesworth DD; King JA; Miller DM; Lim CH
    J Biomed Mater Res A; 2006 Sep; 78(3):541-9. PubMed ID: 16736480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of the radial mechanical performance of PLLA coronary artery stents.
    Pauck RG; Reddy BD
    Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical and biodegradable properties of porous titanium filled with poly-L-lactic acid by modified in situ polymerization technique.
    Nakai M; Niinomi M; Ishii D
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1206-18. PubMed ID: 21783129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helical conformation endows poly-l-lactic acid fibers with a piezoelectric charge under tensile stress.
    Harada Y; Kadono K; Terao T; Suzuki M; Ikada Y; Tomita N
    J Vet Med Sci; 2013; 75(9):1187-92. PubMed ID: 23665512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical study of PLA-PCL fibers during in vitro degradation.
    Vieira AC; Vieira JC; Ferra JM; Magalhães FD; Guedes RM; Marques AT
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):451-60. PubMed ID: 21316633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and mechanical degradation behaviour of semi-crystalline PLLA for bioresorbable stent applications.
    Polak-Kraśna K; Abaei AR; Shirazi RN; Parle E; Carroll O; Ronan W; Vaughan TJ
    J Mech Behav Biomed Mater; 2021 Jun; 118():104409. PubMed ID: 33836301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.
    Chen X; Li Y; Gu N
    Biomed Mater; 2010 Aug; 5(4):044104. PubMed ID: 20683132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable polyesters reinforced with surface-modified vegetable fibers.
    Zini E; Baiardo M; Armelao L; Scandola M
    Macromol Biosci; 2004 Mar; 4(3):286-95. PubMed ID: 15468219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. II. A new method using laser scanning confocal microscopy.
    Slivka MA; Chu CC
    J Biomed Mater Res; 1997 Dec; 37(3):353-62. PubMed ID: 9368140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of thermal treatment on the mechanical characteristics of a PLLA coiled stent.
    Welch TR; Eberhart RC; Chuong CJ
    J Biomed Mater Res B Appl Biomater; 2009 Jul; 90(1):302-11. PubMed ID: 19085931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fatigue on the chemical and mechanical degradation of model stent sub-units.
    Dreher ML; Nagaraja S; Batchelor B
    J Mech Behav Biomed Mater; 2016 Jun; 59():139-145. PubMed ID: 26759973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical, biological, and microstructural properties of biodegradable models of polymeric stents made of PLLA and alginate fibers.
    Bartkowiak-Jowsa M; Będziński R; Szaraniec B; Chłopek J
    Acta Bioeng Biomech; 2011; 13(4):21-8. PubMed ID: 22339177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents.
    Zilberman M; Nelson KD; Eberhart RC
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):792-9. PubMed ID: 15991233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.