These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24805909)

  • 1. Hierarchical silicon nanospikes membrane for rapid and high-throughput mechanical cell lysis.
    So H; Lee K; Seo YH; Murthy N; Pisano AP
    ACS Appl Mater Interfaces; 2014 May; 6(10):6993-7. PubMed ID: 24805909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.
    So H; Lee K; Murthy N; Pisano AP
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20693-9. PubMed ID: 25420232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Handheld mechanical cell lysis chip with ultra-sharp silicon nano-blade arrays for rapid intracellular protein extraction.
    Yun SS; Yoon SY; Song MK; Im SH; Kim S; Lee JH; Yang S
    Lab Chip; 2010 Jun; 10(11):1442-6. PubMed ID: 20480109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid and scalable nanofabrication approach for bio-inspired bactericidal silicon nanospike surfaces.
    Tian F; Li M; Wu S; Li L; Hu H
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113092. PubMed ID: 36577343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanowire-integrated microfluidic devices for facile and reagent-free mechanical cell lysis.
    Kim J; Hong JW; Kim DP; Shin JH; Park I
    Lab Chip; 2012 Aug; 12(16):2914-21. PubMed ID: 22722645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput fabrication of plasmonic nanostructures in nanofluidic pores for biosensing applications.
    Mazzotta F; Höök F; Jonsson MP
    Nanotechnology; 2012 Oct; 23(41):415304. PubMed ID: 23018651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and fabrication of nanoporous silicon-based bioreactors within a microfluidic chip.
    Retterer ST; Siuti P; Choi CK; Thomas DK; Doktycz MJ
    Lab Chip; 2010 May; 10(9):1174-81. PubMed ID: 20390137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes.
    Fang DZ; Striemer CC; Gaborski TR; McGrath JL; Fauchet PM
    J Phys Condens Matter; 2010 Nov; 22(45):454134. PubMed ID: 21339620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a one-dimensional array of nanopores horizontally aligned on a Si substrate.
    Zhang H; Chen Z; Li T; Saito K
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1745-8. PubMed ID: 16245540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biaxially stretchable "wavy" silicon nanomembranes.
    Choi WM; Song J; Khang DY; Jiang H; Huang YY; Rogers JA
    Nano Lett; 2007 Jun; 7(6):1655-63. PubMed ID: 17488053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line cell lysis and DNA extraction on a microfluidic biochip fabricated by microelectromechanical system technology.
    Chen X; Cui DF; Liu CC
    Electrophoresis; 2008 May; 29(9):1844-51. PubMed ID: 18393339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-Through Porous Silicon Membranes for Real-Time Label-Free Biosensing.
    Zhao Y; Gaur G; Retterer ST; Laibinis PE; Weiss SM
    Anal Chem; 2016 Nov; 88(22):10940-10948. PubMed ID: 27786437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite block polymer-microfabricated silicon nanoporous membrane.
    Nuxoll EE; Hillmyer MA; Wang R; Leighton C; Siegel RA
    ACS Appl Mater Interfaces; 2009 Apr; 1(4):888-93. PubMed ID: 20160882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hydrofluoric acid (HF) concentration to pores size diameter of silicon membrane.
    Burham N; Hamzah AA; Majlis BY
    Biomed Mater Eng; 2014; 24(6):2203-9. PubMed ID: 25226919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of Bacteria With Monolithic Lateral Silicon Nanospikes Inside a Microfluidic Channel.
    Li L; Tian F; Chang H; Zhang J; Wang C; Rao W; Hu H
    Front Chem; 2019; 7():483. PubMed ID: 31355180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass-producible microporous silicon membranes for specific leukocyte subset isolation, immunophenotyping, and personalized immunomodulatory drug screening in vitro.
    Stephens A; Nidetz R; Mesyngier N; Chung MT; Song Y; Fu J; Kurabayashi K
    Lab Chip; 2019 Sep; 19(18):3065-3076. PubMed ID: 31389447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of lateral porous silicon membranes into planar microfluidics.
    Leïchlé T; Bourrier D
    Lab Chip; 2015 Feb; 15(3):833-8. PubMed ID: 25483271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery.
    Fine D; Grattoni A; Hosali S; Ziemys A; De Rosa E; Gill J; Medema R; Hudson L; Kojic M; Milosevic M; Brousseau Iii L; Goodall R; Ferrari M; Liu X
    Lab Chip; 2010 Nov; 10(22):3074-83. PubMed ID: 20697650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoresis of a polyelectrolyte through a nanopore.
    Ghosal S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041901. PubMed ID: 17155090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lifetimes of confined acoustic phonons in ultrathin silicon membranes.
    Cuffe J; Ristow O; Chávez E; Shchepetov A; Chapuis PO; Alzina F; Hettich M; Prunnila M; Ahopelto J; Dekorsy T; Sotomayor Torres CM
    Phys Rev Lett; 2013 Mar; 110(9):095503. PubMed ID: 23496722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.