These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 24806125)
1. Variational learning for finite Dirichlet mixture models and applications. Fan W; Bouguila N; Ziou D IEEE Trans Neural Netw Learn Syst; 2012 May; 23(5):762-74. PubMed ID: 24806125 [TBL] [Abstract][Full Text] [Related]
2. Bayesian Estimation of the von-Mises Fisher Mixture Model with Variational Inference. Taghia J; Ma Z; Leijon A IEEE Trans Pattern Anal Mach Intell; 2014 Sep; 36(9):1701-15. PubMed ID: 26352226 [TBL] [Abstract][Full Text] [Related]
3. Online learning of a Dirichlet process mixture of Beta-Liouville distributions via variational inference. Fan W; Bouguila N IEEE Trans Neural Netw Learn Syst; 2013 Nov; 24(11):1850-62. PubMed ID: 24808617 [TBL] [Abstract][Full Text] [Related]
4. Bayesian estimation of beta mixture models with variational inference. Ma Z; Leijon A IEEE Trans Pattern Anal Mach Intell; 2011 Nov; 33(11):2160-73. PubMed ID: 21422484 [TBL] [Abstract][Full Text] [Related]
5. Variational Bayesian Learning for Dirichlet Process Mixture of Inverted Dirichlet Distributions in Non-Gaussian Image Feature Modeling. Ma Z; Lai Y; Kleijn WB; Song YZ; Wang L; Guo J IEEE Trans Neural Netw Learn Syst; 2019 Feb; 30(2):449-463. PubMed ID: 29994731 [TBL] [Abstract][Full Text] [Related]
6. Dirichlet Process Mixture of Generalized Inverted Dirichlet Distributions for Positive Vector Data With Extended Variational Inference. Ma Z; Lai Y; Xie J; Meng D; Kleijn WB; Guo J; Yu J IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6089-6102. PubMed ID: 34086578 [TBL] [Abstract][Full Text] [Related]
7. Variational Bayesian Learning of Generalized Dirichlet-Based Hidden Markov Models Applied to Unusual Events Detection. Epaillard E; Bouguila N IEEE Trans Neural Netw Learn Syst; 2019 Apr; 30(4):1034-1047. PubMed ID: 30106697 [TBL] [Abstract][Full Text] [Related]
8. Axially Symmetric Data Clustering Through Dirichlet Process Mixture Models of Watson Distributions. Fan W; Bouguila N; Du JX; Liu X IEEE Trans Neural Netw Learn Syst; 2019 Jun; 30(6):1683-1694. PubMed ID: 30369452 [TBL] [Abstract][Full Text] [Related]
9. Stochastic complexities of general mixture models in variational Bayesian learning. Watanabe K; Watanabe S Neural Netw; 2007 Mar; 20(2):210-9. PubMed ID: 16904288 [TBL] [Abstract][Full Text] [Related]
10. A Bayesian framework for image segmentation with spatially varying mixtures. Nikou C; Likas AC; Galatsanos NP IEEE Trans Image Process; 2010 Sep; 19(9):2278-89. PubMed ID: 20378472 [TBL] [Abstract][Full Text] [Related]
11. Online Learning of Hierarchical Pitman-Yor Process Mixture of Generalized Dirichlet Distributions With Feature Selection. Fan W; Sallay H; Bouguila N IEEE Trans Neural Netw Learn Syst; 2017 Sep; 28(9):2048-2061. PubMed ID: 27305687 [TBL] [Abstract][Full Text] [Related]
12. Bayesian feature and model selection for Gaussian mixture models. Constantinopoulos C; Titsias MK; Likas A IEEE Trans Pattern Anal Mach Intell; 2006 Jun; 28(6):1013-8. PubMed ID: 16724595 [TBL] [Abstract][Full Text] [Related]
13. Robust Student's-t mixture model with spatial constraints and its application in medical image segmentation. Nguyen TM; Wu QM IEEE Trans Med Imaging; 2012 Jan; 31(1):103-16. PubMed ID: 21859612 [TBL] [Abstract][Full Text] [Related]
14. Latent-space variational bayes. Sung J; Ghahramani Z; Bang SY IEEE Trans Pattern Anal Mach Intell; 2008 Dec; 30(12):2236-42. PubMed ID: 18988955 [TBL] [Abstract][Full Text] [Related]
15. High-dimensional unsupervised selection and estimation of a finite generalized Dirichlet mixture model based on minimum message length. Bouguila N; Ziou D IEEE Trans Pattern Anal Mach Intell; 2007 Oct; 29(10):1716-31. PubMed ID: 17699918 [TBL] [Abstract][Full Text] [Related]