These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 24806642)
1. Active learning with drifting streaming data. Zliobaite I; Bifet A; Pfahringer B; Holmes G IEEE Trans Neural Netw Learn Syst; 2014 Jan; 25(1):27-39. PubMed ID: 24806642 [TBL] [Abstract][Full Text] [Related]
2. COMPOSE: A semisupervised learning framework for initially labeled nonstationary streaming data. Dyer KB; Capo R; Polikar R IEEE Trans Neural Netw Learn Syst; 2014 Jan; 25(1):12-26. PubMed ID: 24806641 [TBL] [Abstract][Full Text] [Related]
3. Online Active Learning Ensemble Framework for Drifted Data Streams. Shan J; Zhang H; Liu W; Liu Q IEEE Trans Neural Netw Learn Syst; 2019 Feb; 30(2):486-498. PubMed ID: 29994730 [TBL] [Abstract][Full Text] [Related]
4. Online Active Learning for Drifting Data Streams. Liu S; Xue S; Wu J; Zhou C; Yang J; Li Z; Cao J IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):186-200. PubMed ID: 34288874 [TBL] [Abstract][Full Text] [Related]
5. A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams. Mohamad S; Bouchachia A; Sayed-Mouchaweh M IEEE Trans Neural Netw Learn Syst; 2018 Jan; 29(1):74-86. PubMed ID: 27775910 [TBL] [Abstract][Full Text] [Related]
6. Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble. Sarnovsky M; Kolarik M PeerJ Comput Sci; 2021; 7():e459. PubMed ID: 33834113 [TBL] [Abstract][Full Text] [Related]
7. Learning High-Dimensional Evolving Data Streams With Limited Labels. Din SU; Kumar J; Shao J; Mawuli CB; Ndiaye WD IEEE Trans Cybern; 2022 Nov; 52(11):11373-11384. PubMed ID: 34033560 [TBL] [Abstract][Full Text] [Related]
8. Active learning with imbalanced multiple noisy labeling. Zhang J; Wu X; Shengs VS IEEE Trans Cybern; 2015 May; 45(5):1081-93. PubMed ID: 25137738 [TBL] [Abstract][Full Text] [Related]
9. Active learning for classifying data streams with unknown number of classes. Mohamad S; Sayed-Mouchaweh M; Bouchachia A Neural Netw; 2018 Feb; 98():1-15. PubMed ID: 29145086 [TBL] [Abstract][Full Text] [Related]
10. Active learning from stream data using optimal weight classifier ensemble. Zhu X; Zhang P; Lin X; Shi Y IEEE Trans Syst Man Cybern B Cybern; 2010 Dec; 40(6):1607-21. PubMed ID: 20363683 [TBL] [Abstract][Full Text] [Related]
11. Active Learning by Querying Informative and Representative Examples. Huang SJ; Jin R; Zhou ZH IEEE Trans Pattern Anal Mach Intell; 2014 Oct; 36(10):1936-49. PubMed ID: 26352626 [TBL] [Abstract][Full Text] [Related]
12. An Adaptive Heterogeneous Online Learning Ensemble Classifier for Nonstationary Environments. Museba T; Nelwamondo F; Ouahada K Comput Intell Neurosci; 2021; 2021():6669706. PubMed ID: 33815495 [TBL] [Abstract][Full Text] [Related]
13. Adaptive Robust Local Online Density Estimation for Streaming Data. Chen Z; Fang Z; Sheng V; Zhao J; Fan W; Edwards A; Zhang K Int J Mach Learn Cybern; 2021 Jun; 12(6):1803-1824. PubMed ID: 34149955 [TBL] [Abstract][Full Text] [Related]
14. Difficult Novel Class Detection in Semisupervised Streaming Data. Zhou P; Wang N; Zhao S; Zhang Y; Wu X IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):6872-6886. PubMed ID: 36279327 [TBL] [Abstract][Full Text] [Related]
15. Bag-Level Aggregation for Multiple-Instance Active Learning in Instance Classification Problems. Carbonneau MA; Granger E; Gagnon G IEEE Trans Neural Netw Learn Syst; 2019 May; 30(5):1441-1451. PubMed ID: 30281492 [TBL] [Abstract][Full Text] [Related]
16. Learning from labeled and unlabeled data using a minimal number of queries. Kothari R; Jain V IEEE Trans Neural Netw; 2003; 14(6):1496-505. PubMed ID: 18244594 [TBL] [Abstract][Full Text] [Related]
17. Active learning for solving the incomplete data problem in facial age classification by the furthest nearest-neighbor criterion. Wang JG; Sung E; Yau WY IEEE Trans Image Process; 2011 Jul; 20(7):2049-62. PubMed ID: 21245008 [TBL] [Abstract][Full Text] [Related]
18. Gas-Sensor Drift Counteraction with Adaptive Active Learning for an Electronic Nose. Liu T; Li D; Chen J; Chen Y; Yang T; Cao J Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463202 [TBL] [Abstract][Full Text] [Related]
19. Measuring the Effectiveness of Adaptive Random Forest for Handling Concept Drift in Big Data Streams. AlQabbany AO; Azmi AM Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356400 [TBL] [Abstract][Full Text] [Related]
20. A survey on detecting healthcare concept drift in AI/ML models from a finance perspective. M S AR; C R N; B R S; Lahza H; Lahza HFM Front Artif Intell; 2022; 5():955314. PubMed ID: 37139355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]