BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24806692)

  • 1. Ionic mechanisms of microsecond-scale spike timing in single cells.
    Markham MR; Zakon HH
    J Neurosci; 2014 May; 34(19):6668-78. PubMed ID: 24806692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-dependent plateau potentials in electrocytes of the electric fish Gymnotus carapo.
    Sierra F; Comas V; Buño W; Macadar O
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Jan; 191(1):1-11. PubMed ID: 15372305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocyte physiology: 50 years later.
    Markham MR
    J Exp Biol; 2013 Jul; 216(Pt 13):2451-8. PubMed ID: 23761470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductances contributing to the action potential of Sternopygus electrocytes.
    Ferrari MB; Zakon HH
    J Comp Physiol A; 1993 Sep; 173(3):281-92. PubMed ID: 8229895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dendritic Na+ current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential.
    Fernandez FR; Mehaffey WH; Turner RW
    J Neurophysiol; 2005 Dec; 94(6):3836-48. PubMed ID: 16120659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter.
    Ban Y; Smith BE; Markham MR
    J Neurophysiol; 2015 Jul; 114(1):520-30. PubMed ID: 25925327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coregulation of voltage-dependent kinetics of Na(+) and K(+) currents in electric organ.
    McAnelly ML; Zakon HH
    J Neurosci; 2000 May; 20(9):3408-14. PubMed ID: 10777803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude.
    Markham MR; Kaczmarek LK; Zakon HH
    J Neurophysiol; 2013 Apr; 109(7):1713-23. PubMed ID: 23324315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic membrane properties and morphological characteristics of interneurons in the rat supratrigeminal region.
    Hsiao CF; Gougar K; Asai J; Chandler SH
    J Neurosci Res; 2007 Dec; 85(16):3673-86. PubMed ID: 17668857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for studying the energetics of sustained high frequency firing.
    Joos B; Markham MR; Lewis JE; Morris CE
    PLoS One; 2018; 13(4):e0196508. PubMed ID: 29708986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of somatic Na+ currents by selective inactivation of axonal channels with a voltage prepulse.
    Milescu LS; Bean BP; Smith JC
    J Neurosci; 2010 Jun; 30(22):7740-8. PubMed ID: 20519549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kv3 K+ channels enable burst output in rat cerebellar Purkinje cells.
    McKay BE; Turner RW
    Eur J Neurosci; 2004 Aug; 20(3):729-39. PubMed ID: 15255983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons.
    Royeck M; Horstmann MT; Remy S; Reitze M; Yaari Y; Beck H
    J Neurophysiol; 2008 Oct; 100(4):2361-80. PubMed ID: 18650312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical mechanism of spike threshold dependence on the rate of rise of the membrane potential by sodium channel inactivation or subthreshold axonal potassium current.
    Wester JC; Contreras D
    J Comput Neurosci; 2013 Aug; 35(1):1-17. PubMed ID: 23344915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons.
    Colbert CM; Johnston D
    J Neurosci; 1996 Nov; 16(21):6676-86. PubMed ID: 8824308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiological characterization of Grueneberg ganglion olfactory neurons: spontaneous firing, sodium conductance, and hyperpolarization-activated currents.
    Liu CY; Xiao C; Fraser SE; Lester HA; Koos DS
    J Neurophysiol; 2012 Sep; 108(5):1318-34. PubMed ID: 22649209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of persistent Na+ current in spike initiation in primary sensory neurons of the rat mesencephalic trigeminal nucleus.
    Kang Y; Saito M; Sato H; Toyoda H; Maeda Y; Hirai T; Bae YC
    J Neurophysiol; 2007 Mar; 97(3):2385-93. PubMed ID: 17229822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron.
    Turner RW; Maler L; Deerinck T; Levinson SR; Ellisman MH
    J Neurosci; 1994 Nov; 14(11 Pt 1):6453-71. PubMed ID: 7965050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological characterization of ionic currents that regulate the pacemaker rhythm in a weakly electric fish.
    Smith GT; Zakon HH
    J Neurobiol; 2000 Feb; 42(2):270-86. PubMed ID: 10640333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.