These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 24807043)
1. Understanding the electrochemical mechanism of K-αMnO2 for magnesium battery cathodes. Arthur TS; Zhang R; Ling C; Glans PA; Fan X; Guo J; Mizuno F ACS Appl Mater Interfaces; 2014 May; 6(10):7004-8. PubMed ID: 24807043 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
4. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
5. Unveil the Chemistry of Olivine FePO4 as Magnesium Battery Cathode. Zhang R; Ling C ACS Appl Mater Interfaces; 2016 Jul; 8(28):18018-26. PubMed ID: 27355741 [TBL] [Abstract][Full Text] [Related]
6. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical investigation of the role of MnO2 nanorod catalysts in water containing and anhydrous electrolytes for Li-O2 battery applications. Geaney H; O'Dwyer C Phys Chem Chem Phys; 2015 Mar; 17(10):6748-59. PubMed ID: 25640321 [TBL] [Abstract][Full Text] [Related]
8. Highly Reversible Cuprous Mediated Cathode Chemistry for Magnesium Batteries. Cheng X; Zhang Z; Kong Q; Zhang Q; Wang T; Dong S; Gu L; Wang X; Ma J; Han P; Lin HJ; Chen CT; Cui G Angew Chem Int Ed Engl; 2020 Jul; 59(28):11477-11482. PubMed ID: 32277864 [TBL] [Abstract][Full Text] [Related]
9. Anti-site mixing governs the electrochemical performances of olivine-type MgMnSiO4 cathodes for rechargeable magnesium batteries. Mori T; Masese T; Orikasa Y; Huang ZD; Okado T; Kim J; Uchimoto Y Phys Chem Chem Phys; 2016 May; 18(19):13524-9. PubMed ID: 27140839 [TBL] [Abstract][Full Text] [Related]
10. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391 [TBL] [Abstract][Full Text] [Related]
11. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
12. Controlling side reactions and self-discharge in high-voltage spinel cathodes: the critical role of surface crystallographic facets. Kuppan S; Duncan H; Chen G Phys Chem Chem Phys; 2015 Oct; 17(39):26471-81. PubMed ID: 26393307 [TBL] [Abstract][Full Text] [Related]
13. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. Deb A; Bergmann U; Cairns EJ; Cramer SP J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738 [TBL] [Abstract][Full Text] [Related]
14. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques. Zhu J; Lu L; Zeng K ACS Nano; 2013 Feb; 7(2):1666-75. PubMed ID: 23336441 [TBL] [Abstract][Full Text] [Related]
15. Pushing the theoretical limit of Li-CF(x) batteries: a tale of bifunctional electrolyte. Rangasamy E; Li J; Sahu G; Dudney N; Liang C J Am Chem Soc; 2014 May; 136(19):6874-7. PubMed ID: 24730570 [TBL] [Abstract][Full Text] [Related]
16. Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists-Electrolytes and Cathodes Needed. Muldoon J; Bucur CB; Gregory T Angew Chem Int Ed Engl; 2017 Sep; 56(40):12064-12084. PubMed ID: 28295967 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the water-stimulated Mg Sahadeo E; Song J; Gaskell K; Kim N; Rubloff G; Lee SB Phys Chem Chem Phys; 2018 Jan; 20(4):2517-2526. PubMed ID: 29313861 [TBL] [Abstract][Full Text] [Related]
18. Quantitatively Predict the Potential of MnO2 Polymorphs as Magnesium Battery Cathodes. Ling C; Zhang R; Mizuno F ACS Appl Mater Interfaces; 2016 Feb; 8(7):4508-15. PubMed ID: 26830338 [TBL] [Abstract][Full Text] [Related]
19. Using waste Li ion batteries as cathodes in rechargeable Li-liquid batteries. Chun J; Chung M; Lee J; Kim Y Phys Chem Chem Phys; 2013 May; 15(19):7036-40. PubMed ID: 23559258 [TBL] [Abstract][Full Text] [Related]
20. Li ion battery materials with core-shell nanostructures. Su L; Jing Y; Zhou Z Nanoscale; 2011 Oct; 3(10):3967-83. PubMed ID: 21879116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]