These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A scalable memetic algorithm for simultaneous instance and feature selection. García-Pedrajas N; de Haro-García A; Pérez-Rodríguez J Evol Comput; 2014; 22(1):1-45. PubMed ID: 23544367 [TBL] [Abstract][Full Text] [Related]
3. Deformable segmentation via sparse representation and dictionary learning. Zhang S; Zhan Y; Metaxas DN Med Image Anal; 2012 Oct; 16(7):1385-96. PubMed ID: 22959839 [TBL] [Abstract][Full Text] [Related]
4. Graph ensemble boosting for imbalanced noisy graph stream classification. Pan S; Wu J; Zhu X; Zhang C IEEE Trans Cybern; 2015 May; 45(5):940-54. PubMed ID: 25167562 [TBL] [Abstract][Full Text] [Related]
5. Comparative analysis of instance selection algorithms for instance-based classifiers in the context of medical decision support. Mazurowski MA; Malof JM; Tourassi GD Phys Med Biol; 2011 Jan; 56(2):473-89. PubMed ID: 21191152 [TBL] [Abstract][Full Text] [Related]
6. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding. Guturu P; Dantu R IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):645-66. PubMed ID: 18558530 [TBL] [Abstract][Full Text] [Related]
7. MILIS: multiple instance learning with instance selection. Fu Z; Robles-Kelly A; Zhou J IEEE Trans Pattern Anal Mach Intell; 2011 May; 33(5):958-77. PubMed ID: 20733226 [TBL] [Abstract][Full Text] [Related]
8. Graph sharpening plus graph integration: a synergy that improves protein functional classification. Shin H; Lisewski AM; Lichtarge O Bioinformatics; 2007 Dec; 23(23):3217-24. PubMed ID: 17977886 [TBL] [Abstract][Full Text] [Related]
9. Affinity learning with diffusion on tensor product graph. Yang X; Prasad L; Latecki LJ IEEE Trans Pattern Anal Mach Intell; 2013 Jan; 35(1):28-38. PubMed ID: 22392704 [TBL] [Abstract][Full Text] [Related]
10. A graph-based approach to systematically reconstruct human transcriptional regulatory modules. Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346 [TBL] [Abstract][Full Text] [Related]
11. Online reinforcement learning for dynamic multimedia systems. Mastronarde N; van der Schaar M IEEE Trans Image Process; 2010 Feb; 19(2):290-305. PubMed ID: 19884082 [TBL] [Abstract][Full Text] [Related]
12. MILES: multiple-instance learning via embedded instance selection. Chen Y; Bi J; Wang JZ IEEE Trans Pattern Anal Mach Intell; 2006 Dec; 28(12):1931-47. PubMed ID: 17108368 [TBL] [Abstract][Full Text] [Related]
13. A novel divide-and-merge classification for high dimensional datasets. Seo M; Oh S Comput Biol Chem; 2013 Feb; 42():23-34. PubMed ID: 23257411 [TBL] [Abstract][Full Text] [Related]
14. Robust and efficient identification of biomarkers by classifying features on graphs. Hwang T; Sicotte H; Tian Z; Wu B; Kocher JP; Wigle DA; Kumar V; Kuang R Bioinformatics; 2008 Sep; 24(18):2023-9. PubMed ID: 18653521 [TBL] [Abstract][Full Text] [Related]
15. Rough set feature selection and rule induction for prediction of malignancy degree in brain glioma. Wang X; Yang J; Jensen R; Liu X Comput Methods Programs Biomed; 2006 Aug; 83(2):147-56. PubMed ID: 16893588 [TBL] [Abstract][Full Text] [Related]
16. Vicinal support vector classifier using supervised kernel-based clustering. Yang X; Cao A; Song Q; Schaefer G; Su Y Artif Intell Med; 2014 Mar; 60(3):189-96. PubMed ID: 24637294 [TBL] [Abstract][Full Text] [Related]
17. Adaptive global training set selection for spectral estimation of printed inks using reflectance modeling. Eckhard T; Valero EM; Hernández-Andrés J; Schnitzlein M Appl Opt; 2014 Feb; 53(4):709-19. PubMed ID: 24514188 [TBL] [Abstract][Full Text] [Related]
18. A unified feature and instance selection framework using optimum experimental design. Zhang L; Chen C; Bu J; He X IEEE Trans Image Process; 2012 May; 21(5):2379-88. PubMed ID: 22262681 [TBL] [Abstract][Full Text] [Related]
19. How to decide which are the most pertinent overly-represented features during gene set enrichment analysis. Barriot R; Sherman DJ; Dutour I BMC Bioinformatics; 2007 Sep; 8():332. PubMed ID: 17848190 [TBL] [Abstract][Full Text] [Related]
20. Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Park Y; Luo L; Parhi KK; Netoff T Epilepsia; 2011 Oct; 52(10):1761-70. PubMed ID: 21692794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]