These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 24807291)

  • 1. Target-triggered NIR emission with a large stokes shift for the detection and imaging of cysteine in living cells.
    Zhao C; Li X; Wang F
    Chem Asian J; 2014 Jul; 9(7):1777-81. PubMed ID: 24807291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A water-soluble near-infrared fluorescent probe for sensitive and selective detection of cysteine.
    Zhang S; Wu D; Wu J; Xia Q; Jia X; Song X; Zeng L; Yuan Y
    Talanta; 2019 Nov; 204():747-752. PubMed ID: 31357361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Monitoring of Endogenous Cysteine Levels In Vivo by near-Infrared Turn-on Fluorescent Probe with Large Stokes Shift.
    Qi Y; Huang Y; Li B; Zeng F; Wu S
    Anal Chem; 2018 Jan; 90(1):1014-1020. PubMed ID: 29182316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel fluorescent probe with red emission and a large Stokes shift for selective imaging of endogenous cysteine in living cells.
    Chen D; Long Z; Dang Y; Chen L
    Analyst; 2018 Nov; 143(23):5779-5784. PubMed ID: 30345996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperation of ESIPT and ICT Processes in the Designed 2-(2'-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments.
    Long Y; Liu J; Tian D; Dai F; Zhang S; Zhou B
    Anal Chem; 2020 Oct; 92(20):14236-14243. PubMed ID: 33030891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescent probe for specific detection of cysteine in the lipid dense region of cells.
    Ali F; H A A; Taye N; Gonnade RG; Chattopadhyay S; Das A
    Chem Commun (Camb); 2015 Dec; 51(95):16932-5. PubMed ID: 26442642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NIR two-photon fluorescent probe for biothiol detection and imaging of living cells in vivo.
    Xia X; Qian Y
    Analyst; 2018 Oct; 143(21):5218-5224. PubMed ID: 30270379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly sensitive two-photon fluorescent probe for glutathione with near-infrared emission at 719 nm and intracellular glutathione imaging.
    Huang C; Qian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():68-76. PubMed ID: 30927573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells.
    Wang N; Chen M; Gao J; Ji X; He J; Zhang J; Zhao W
    Talanta; 2019 Apr; 195():281-289. PubMed ID: 30625544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn-on fluorescent outputs.
    Wang F; Guo Z; Li X; Li X; Zhao C
    Chemistry; 2014 Sep; 20(36):11471-8. PubMed ID: 25056113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids.
    Zhang Y; Li Y; Yan XP
    Anal Chem; 2009 Jun; 81(12):5001-7. PubMed ID: 19518148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel colorimetric and ratiometric fluorescent probe for cysteine based on conjugate addition-cyclization-elimination strategy with a large Stokes shift and bioimaging in living cells.
    Zhu D; Yan X; Ren A; Xie W; Duan Z
    Anal Chim Acta; 2019 Jun; 1058():136-145. PubMed ID: 30851847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual-response fluorescent probe for the discrimination of cysteine from glutathione and homocysteine.
    Ji X; Lv M; Pan F; Zhang J; Wang J; Wang J; Zhao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():1-7. PubMed ID: 30077035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Native chemical ligation combined with spirocyclization of benzopyrylium dyes for the ratiometric and selective fluorescence detection of cysteine and homocysteine.
    Lv H; Yang XF; Zhong Y; Guo Y; Li Z; Li H
    Anal Chem; 2014 Feb; 86(3):1800-7. PubMed ID: 24410246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dual-site fluorescent probe for direct and highly selective detection of cysteine and its application in living cells.
    Wang P; Wang Q; Huang J; Li N; Gu Y
    Biosens Bioelectron; 2017 Jun; 92():583-588. PubMed ID: 27829568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe.
    Liu Y; Yu D; Ding S; Xiao Q; Guo J; Feng G
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17543-50. PubMed ID: 25253409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria-Targeted Near-Infrared Fluorescent Off-On Probe for Selective Detection of Cysteine in Living Cells and in Vivo.
    Han C; Yang H; Chen M; Su Q; Feng W; Li F
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27968-75. PubMed ID: 26618279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Cysteine in Bioimaging with a Near-Infrared Probe Based on a Novel Fluorescence Quenching Mechanism.
    Tao Y; Ji X; Zhang J; Jin Y; Wang N; Si Y; Zhao W
    Chembiochem; 2020 Nov; 21(21):3131-3136. PubMed ID: 32558103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging.
    Ni Y; Wu J
    Org Biomol Chem; 2014 Jun; 12(23):3774-91. PubMed ID: 24781214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells.
    Zhang W; Liu J; Yu Y; Han Q; Cheng T; Shen J; Wang B; Jiang Y
    Talanta; 2018 Aug; 185():477-482. PubMed ID: 29759230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.