These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24807442)

  • 21. The mammalian central pattern generator for locomotion.
    Guertin PA
    Brain Res Rev; 2009 Dec; 62(1):45-56. PubMed ID: 19720083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A salamander's flexible spinal network for locomotion, modeled at two levels of abstraction.
    Knüsel J; Bicanski A; Ryczko D; Cabelguen JM; Ijspeert AJ
    Integr Comp Biol; 2013 Aug; 53(2):269-82. PubMed ID: 23784700
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chapter 10--a hierarchical perspective on rhythm generation for locomotor control.
    Yakovenko S
    Prog Brain Res; 2011; 188():151-66. PubMed ID: 21333808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal correlations in stochastic models of double bursting during simulated locomotion.
    Boothe DL; Cohen AH; Troyer TW
    J Neurophysiol; 2006 Mar; 95(3):1556-70. PubMed ID: 16354728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General principles of rhythmogenesis in central pattern generator networks.
    Harris-Warrick RM
    Prog Brain Res; 2010; 187():213-22. PubMed ID: 21111210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped.
    Spitz J; Evstrachin A; Zacksenhouse M
    Bioinspir Biomim; 2015 Aug; 10(5):056005. PubMed ID: 26291076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic control of the central pattern generator for locomotion.
    Vogelstein RJ; Tenore F; Etienne-Cummings R; Lewis MA; Cohen AH
    Biol Cybern; 2006 Dec; 95(6):555-66. PubMed ID: 17139511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots.
    Nassour J; Hénaff P; Benouezdou F; Cheng G
    Biol Cybern; 2014 Jun; 108(3):291-303. PubMed ID: 24570353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of phase shifts of sensory inputs in walking revealed by means of phase reduction.
    Yeldesbay A; Tóth T; Daun S
    J Comput Neurosci; 2018 Jun; 44(3):313-339. PubMed ID: 29589252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion.
    Büschges A
    J Neurophysiol; 2005 Mar; 93(3):1127-35. PubMed ID: 15738270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Programmable coupled oscillators for synchronized locomotion.
    Dutta S; Parihar A; Khanna A; Gomez J; Chakraborty W; Jerry M; Grisafe B; Raychowdhury A; Datta S
    Nat Commun; 2019 Jul; 10(1):3299. PubMed ID: 31341167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Central Pattern Generators: Mechanisms of the Activity and Their Role in the Control of "Automatic" Movements].
    Arshavsky I; Deliagina TG; Orlovsky GN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2015; 65(2):156-87. PubMed ID: 26080596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback.
    Bryden J; Cohen N
    Biol Cybern; 2008 Apr; 98(4):339-51. PubMed ID: 18350313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotor circuits in the mammalian spinal cord.
    Kiehn O
    Annu Rev Neurosci; 2006; 29():279-306. PubMed ID: 16776587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer simulation study on central pattern generator: from biology to engineering.
    Zhang D; Zhu K
    Int J Neural Syst; 2006 Dec; 16(6):405-22. PubMed ID: 17285687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG.
    Ausborn J; Snyder AC; Shevtsova NA; Rybak IA; Rubin JE
    J Neurophysiol; 2018 Jan; 119(1):96-117. PubMed ID: 28978767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.