These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24807442)

  • 41. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microcircuits in action--from CPGs to neocortex.
    Grillner S; Markram H; De Schutter E; Silberberg G; LeBeau FE
    Trends Neurosci; 2005 Oct; 28(10):525-33. PubMed ID: 16118022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences.
    Steuer I; Guertin PA
    Rev Neurosci; 2019 Jan; 30(2):107-164. PubMed ID: 30543520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Central pattern generators: some principles learned from invertebrate model systems.
    Lukowiak K
    J Physiol (Paris); 1991; 85(2):63-70. PubMed ID: 1757891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Central pattern generating networks in insect locomotion.
    Mantziaris C; Bockemühl T; Büschges A
    Dev Neurobiol; 2020 Jan; 80(1-2):16-30. PubMed ID: 32128970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Excitatory components of the mammalian locomotor CPG.
    Kiehn O; Quinlan KA; Restrepo CE; Lundfald L; Borgius L; Talpalar AE; Endo T
    Brain Res Rev; 2008 Jan; 57(1):56-63. PubMed ID: 17988744
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Symmetry in locomotor central pattern generators and animal gaits.
    Golubitsky M; Stewart I; Buono PL; Collins JJ
    Nature; 1999 Oct; 401(6754):693-5. PubMed ID: 10537106
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequency modulation of large oscillatory neural networks.
    Wyffels F; Li J; Waegeman T; Schrauwen B; Jaeger H
    Biol Cybern; 2014 Apr; 108(2):145-57. PubMed ID: 24515094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuropeptide modulation of microcircuits.
    Nusbaum MP; Blitz DM
    Curr Opin Neurobiol; 2012 Aug; 22(4):592-601. PubMed ID: 22305485
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Model of a bilateral Brown-type central pattern generator for symmetric and asymmetric locomotion.
    Sobinov A; Yakovenko S
    J Neurophysiol; 2018 Mar; 119(3):1071-1083. PubMed ID: 29187551
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Astrocytic modulation of central pattern generating motor circuits.
    Turk AZ; Bishop M; Adeck A; SheikhBahaei S
    Glia; 2022 Aug; 70(8):1506-1519. PubMed ID: 35212422
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Altered gravity highlights central pattern generator mechanisms.
    White O; Bleyenheuft Y; Ronsse R; Smith AM; Thonnard JL; Lefèvre P
    J Neurophysiol; 2008 Nov; 100(5):2819-24. PubMed ID: 18650309
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fictive rhythmic motor patterns produced by the tail spinal cord in salamanders.
    Charrier V; Cabelguen JM
    Neuroscience; 2013; 255():191-202. PubMed ID: 24161283
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuromorphic control of stepping pattern generation: a dynamic model with analog circuit implementation.
    Yang Z; Cameron K; Lewinger W; Webb B; Murray A
    IEEE Trans Neural Netw Learn Syst; 2012 Mar; 23(3):373-84. PubMed ID: 24808545
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biological clockwork underlying adaptive rhythmic movements.
    Iwasaki T; Chen J; Friesen WO
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):978-83. PubMed ID: 24395788
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.
    Manfredi L; Assaf T; Mintchev S; Marrazza S; Capantini L; Orofino S; Ascari L; Grillner S; Wallén P; Ekeberg O; Stefanini C; Dario P
    Biol Cybern; 2013 Oct; 107(5):513-27. PubMed ID: 24030051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Key bifurcations of bursting polyrhythms in 3-cell central pattern generators.
    Wojcik J; Schwabedal J; Clewley R; Shilnikov AL
    PLoS One; 2014; 9(4):e92918. PubMed ID: 24739943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Does Epileptiform Activity Represent a Failure of Neuromodulation to Control Central Pattern Generator-Like Neocortical Behavior?
    Traub RD; Whittington MA; Hall SP
    Front Neural Circuits; 2017; 11():78. PubMed ID: 29093667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.