These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2480816)

  • 21. Differences in ion-channel formation by ampullosporins B, C, D and semisynthetic desacetyltryptophanyl ampullosporin A.
    Grigoriev PA; Kronen M; Schlegel B; Härtl A; Gräfe U
    Bioelectrochemistry; 2002 Sep; 57(2):119-21. PubMed ID: 12160607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gaegurin 4, a peptide antibiotic of frog skin, forms voltage-dependent channels in planar lipid bilayers.
    Kim HJ; Han SK; Park JB; Baek HJ; Lee BJ; Ryu PD
    J Pept Res; 1999 Jan; 53(1):1-7. PubMed ID: 10195436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the Gln/Glu residues of trichocellins A-II/B-II in ion-channel formation in lipid membranes and catecholamine secretion from chromaffin cells.
    Wada S; Iida A; Asami K; Tachikawa E; Fujita T
    Biochim Biophys Acta; 1997 Apr; 1325(2):209-14. PubMed ID: 9168146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial peptide magainin I from Xenopus skin forms anion-permeable channels in planar lipid bilayers.
    Duclohier H; Molle G; Spach G
    Biophys J; 1989 Nov; 56(5):1017-21. PubMed ID: 2481510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the channel properties of tetanus toxin in planar lipid bilayers.
    Gambale F; Montal M
    Biophys J; 1988 May; 53(5):771-83. PubMed ID: 2455552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion-channels formed by hypelcins, antibiotic peptides, in planar bilayer lipid membranes.
    Koide N; Asami K; Fujita T
    Biochim Biophys Acta; 1997 May; 1326(1):47-53. PubMed ID: 9188799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cromolyn binding protein constitutes the Ca2+ channel of basophils opening upon immunological stimulus.
    Mazurek N; Schindler H; Schürholz T; Pecht I
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6841-5. PubMed ID: 6093125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aggregation and porin-like channel activity of a beta sheet peptide.
    Thundimadathil J; Roeske RW; Jiang HY; Guo L
    Biochemistry; 2005 Aug; 44(30):10259-70. PubMed ID: 16042403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporation of ion channels from bovine rod outer segments into planar lipid bilayers.
    Hanke W; Kaupp UB
    Biophys J; 1984 Nov; 46(5):587-95. PubMed ID: 6093905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmembrane peptide NB of influenza B: a simulation, structure, and conductance study.
    Fischer WB; Pitkeathly M; Wallace BA; Forrest LR; Smith GR; Sansom MS
    Biochemistry; 2000 Oct; 39(41):12708-16. PubMed ID: 11027151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneous amyloid-formed ion channels as a common cytotoxic mechanism: implications for therapeutic strategies against amyloidosis.
    Kourie JI; Culverson AL; Farrelly PV; Henry CL; Laohachai KN
    Cell Biochem Biophys; 2002; 36(2-3):191-207. PubMed ID: 12139405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum.
    Bell JE; Miller C
    Biophys J; 1984 Jan; 45(1):279-87. PubMed ID: 6324908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protons decrease the single channel conductance of the sarcoplasmic reticulum K+ channel in neutral and negatively charged bilayers.
    Bell J
    Biophys J; 1985 Aug; 48(2):349-53. PubMed ID: 2413916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetylcholine receptor in planar lipid bilayers. Characterization of the channel properties of the purified nicotinic acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayers.
    Labarca P; Lindstrom J; Montal M
    J Gen Physiol; 1984 Apr; 83(4):473-96. PubMed ID: 6144720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-conductance chloride channel from crayfish skeletal muscle incorporated into planar lipid bilayers.
    Proks P; Hurnák O; Zachar J
    Gen Physiol Biophys; 1991 Dec; 10(6):537-48. PubMed ID: 1724970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primary structure of peptides and ion channels. Role of amino acid side chains in voltage gating of melittin channels.
    Tosteson MT; Alvarez O; Hubbell W; Bieganski RM; Attenbach C; Caporales LH; Levy JJ; Nutt RF; Rosenblatt M; Tosteson DC
    Biophys J; 1990 Dec; 58(6):1367-75. PubMed ID: 1703448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ion channel formation by synthetic analogues of staphylococcal delta-toxin.
    Kerr ID; Dufourcq J; Rice JA; Fredkin DR; Sansom MS
    Biochim Biophys Acta; 1995 Jun; 1236(2):219-27. PubMed ID: 7540870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. C-terminally shortened alamethicin on templates: influence of the linkers on conductances.
    Duclohier H; Kociolek K; Stasiak M; Leplawy MT; Marshall GR
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):14-22. PubMed ID: 10446286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the mechanism of channel-length dependence of gramicidin single-channel conductance.
    Urry DW; Jing N; Prasad KU
    Biochim Biophys Acta; 1987 Aug; 902(1):137-44. PubMed ID: 2440477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.