BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24808185)

  • 1. Determinants of substrate and cation transport in the human Na+/dicarboxylate cotransporter NaDC3.
    Schlessinger A; Sun NN; Colas C; Pajor AM
    J Biol Chem; 2014 Jun; 289(24):16998-7008. PubMed ID: 24808185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family.
    Pajor AM
    Pflugers Arch; 2014 Jan; 466(1):119-30. PubMed ID: 24114175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping Functionally Important Residues in the Na
    Colas C; Schlessinger A; Pajor AM
    Biochemistry; 2017 Aug; 56(33):4432-4441. PubMed ID: 28731330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threonine-509 is a determinant of apparent affinity for both substrate and cations in the human Na+/dicarboxylate cotransporter.
    Weerachayaphorn J; Pajor AM
    Biochemistry; 2008 Jan; 47(3):1087-93. PubMed ID: 18161988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane topology structure of human high-affinity, sodium-dependent dicarboxylate transporter.
    Bai XY; Chen X; Sun AQ; Feng Z; Hou K; Fu B
    FASEB J; 2007 Aug; 21(10):2409-17. PubMed ID: 17426067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of the divalent anion/Na
    Nie R; Stark S; Symersky J; Kaplan RS; Lu M
    Nat Commun; 2017 Apr; 8():15009. PubMed ID: 28436435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent accessibility changes in a Na
    Sampson CDD; Stewart MJ; Mindell JA; Mulligan C
    J Biol Chem; 2020 Dec; 295(52):18524-18538. PubMed ID: 33087444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3.
    Kaufhold M; Schulz K; Breljak D; Gupta S; Henjakovic M; Krick W; Hagos Y; Sabolic I; Burckhardt BC; Burckhardt G
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1026-34. PubMed ID: 21865262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane helix 7 in the Na+/dicarboxylate cotransporter 1 is an outer helix that contains residues critical for function.
    Pajor AM; Sun NN; Joshi AD; Randolph KM
    Biochim Biophys Acta; 2011 Jun; 1808(6):1454-61. PubMed ID: 21073858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-Based Identification of Inhibitors for the SLC13 Family of Na(+)/Dicarboxylate Cotransporters.
    Colas C; Pajor AM; Schlessinger A
    Biochemistry; 2015 Aug; 54(31):4900-8. PubMed ID: 26176240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of isoleucine-554 in lithium binding by the Na+/dicarboxylate cotransporter NaDC1.
    Pajor AM; Sun NN
    Biochemistry; 2010 Oct; 49(41):8937-43. PubMed ID: 20845974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-dependent extracellular accessibility of Lys-84 in the sodium/dicarboxylate cotransporter.
    Weerachayaphorn J; Pajor AM
    J Biol Chem; 2007 Jul; 282(28):20213-20. PubMed ID: 17504760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae.
    Mulligan C; Fitzgerald GA; Wang DN; Mindell JA
    J Gen Physiol; 2014 Jun; 143(6):745-59. PubMed ID: 24821967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determinants of substrate and cation affinities in the Na+/dicarboxylate cotransporter.
    Kahn ES; Pajor AM
    Biochemistry; 1999 May; 38(19):6151-6. PubMed ID: 10320342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single nucleotide polymorphisms in the human Na+-dicarboxylate cotransporter affect transport activity and protein expression.
    Pajor AM; Sun NN
    Am J Physiol Renal Physiol; 2010 Oct; 299(4):F704-11. PubMed ID: 20610529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium and lithium interactions with the Na+/Dicarboxylate cotransporter.
    Pajor AM; Hirayama BA; Loo DD
    J Biol Chem; 1998 Jul; 273(30):18923-9. PubMed ID: 9668069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of sodium dependent SLC13 transporter inhibitors in various metabolic disorders.
    Akhtar MJ; Khan SA; Kumar B; Chawla P; Bhatia R; Singh K
    Mol Cell Biochem; 2023 Aug; 478(8):1669-1687. PubMed ID: 36495372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.
    Ma Y; Bai XY; Du X; Fu B; Chen X
    J Gerontol A Biol Sci Med Sci; 2016 Jan; 71(1):1-12. PubMed ID: 25384549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SLC13 family of Na⁺-coupled di- and tri-carboxylate/sulfate transporters.
    Bergeron MJ; Clémençon B; Hediger MA; Markovich D
    Mol Aspects Med; 2013; 34(2-3):299-312. PubMed ID: 23506872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.