BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24808185)

  • 21. Distribution of organic anion transporters NaDC3 and OAT1-3 along the human nephron.
    Breljak D; Ljubojević M; Hagos Y; Micek V; Balen Eror D; Vrhovac Madunić I; Brzica H; Karaica D; Radović N; Kraus O; Anzai N; Koepsell H; Burckhardt G; Burckhardt BC; Sabolić I
    Am J Physiol Renal Physiol; 2016 Jul; 311(1):F227-38. PubMed ID: 27053689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of the renal Na+/dicarboxylate cotransporter, NaDC-1, in COS-7 cells.
    Pajor AM; Valmonte HG
    Pflugers Arch; 1996 Feb; 431(4):645-51. PubMed ID: 8596711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport of N-acetylaspartate via murine sodium/dicarboxylate cotransporter NaDC3 and expression of this transporter and aspartoacylase II in ocular tissues in mouse.
    George RL; Huang W; Naggar HA; Smith SB; Ganapathy V
    Biochim Biophys Acta; 2004 Sep; 1690(1):63-9. PubMed ID: 15337171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The transport properties of the human renal Na(+)- dicarboxylate cotransporter under voltage-clamp conditions.
    Yao X; Pajor AM
    Am J Physiol Renal Physiol; 2000 Jul; 279(1):F54-64. PubMed ID: 10894787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional identity of Drosophila melanogaster Indy as a cation-independent, electroneutral transporter for tricarboxylic acid-cycle intermediates.
    Inoue K; Fei YJ; Huang W; Zhuang L; Chen Z; Ganapathy V
    Biochem J; 2002 Oct; 367(Pt 2):313-9. PubMed ID: 12186628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Primary structure and functional characteristics of a mammalian sodium-coupled high affinity dicarboxylate transporter.
    Kekuda R; Wang H; Huang W; Pajor AM; Leibach FH; Devoe LD; Prasad PD; Ganapathy V
    J Biol Chem; 1999 Feb; 274(6):3422-9. PubMed ID: 9920886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates.
    Inoue K; Fei YJ; Zhuang L; Gopal E; Miyauchi S; Ganapathy V
    Biochem J; 2004 Mar; 378(Pt 3):949-57. PubMed ID: 14656221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a rat Na+-dicarboxylate cotransporter.
    Chen XZ; Shayakul C; Berger UV; Tian W; Hediger MA
    J Biol Chem; 1998 Aug; 273(33):20972-81. PubMed ID: 9694847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium-coupled transporters for Krebs cycle intermediates.
    Pajor AM
    Annu Rev Physiol; 1999; 61():663-82. PubMed ID: 10099705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span.
    Fei YJ; Inoue K; Ganapathy V
    J Biol Chem; 2003 Feb; 278(8):6136-44. PubMed ID: 12480943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis of ion - substrate coupling in the Na
    Sauer DB; Marden JJ; Sudar JC; Song J; Mulligan C; Wang DN
    Nat Commun; 2022 May; 13(1):2644. PubMed ID: 35551191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sodium-sulfate/carboxylate cotransporters (SLC13).
    Markovich D
    Curr Top Membr; 2012; 70():239-56. PubMed ID: 23177988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter.
    Wang H; Fei YJ; Kekuda R; Yang-Feng TL; Devoe LD; Leibach FH; Prasad PD; Ganapathy V
    Am J Physiol Cell Physiol; 2000 May; 278(5):C1019-30. PubMed ID: 10794676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional characterization of high-affinity Na(+)/dicarboxylate cotransporter found in Xenopus laevis kidney and heart.
    Oshiro N; Pajor AM
    Am J Physiol Cell Physiol; 2005 Nov; 289(5):C1159-68. PubMed ID: 15944208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional characterization of SdcF from Bacillus licheniformis, a homolog of the SLC13 Na⁺/dicarboxylate transporters.
    Pajor AM; Sun NN; Leung A
    J Membr Biol; 2013 Sep; 246(9):705-15. PubMed ID: 23979173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters.
    Pajor AM
    Pflugers Arch; 2006 Feb; 451(5):597-605. PubMed ID: 16211368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dynamic anchor domain in slc13 transporters controls metabolite transport.
    Khamaysi A; Aharon S; Eini-Rider H; Ohana E
    J Biol Chem; 2020 Jun; 295(24):8155-8163. PubMed ID: 32152229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate specificity of the human renal sodium dicarboxylate cotransporter, hNaDC-3, under voltage-clamp conditions.
    Burckhardt BC; Lorenz J; Kobbe C; Burckhardt G
    Am J Physiol Renal Physiol; 2005 Apr; 288(4):F792-9. PubMed ID: 15561973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arginine-349 and aspartate-373 of the Na(+)/dicarboxylate cotransporter are conformationally sensitive residues.
    Yao X; Pajor AM
    Biochemistry; 2002 Jan; 41(3):1083-90. PubMed ID: 11790133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutathione is a low-affinity substrate of the human sodium-dependent dicarboxylate transporter.
    Schorbach L; Krick W; Burckhardt G; Burckhardt BC
    Nephron Physiol; 2013; 124(1-2):1-5. PubMed ID: 24247155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.