These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24808263)

  • 1. A task-specific analysis of the benefit of haptic shared control during telemanipulation.
    Boessenkool H; Abbink DA; Heemskerk CJ; van der Helm FC; Wildenbeest JG
    IEEE Trans Haptics; 2013; 6(1):2-12. PubMed ID: 24808263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Haptic Shared-Control Architecture for Guided Multi-Target Robotic Grasping.
    Abi-Farraj F; Pacchierotti C; Arenz O; Neumann G; Giordano PR
    IEEE Trans Haptics; 2020; 13(2):270-285. PubMed ID: 31034421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic Shared Control in Tele-Manipulation: Effects of Inaccuracies in Guidance on Task Execution.
    van Oosterhout J; Wildenbeest JG; Boessenkool H; Heemskerk CJ; de Baar MR; van der Helm FC; Abbink DA
    IEEE Trans Haptics; 2015; 8(2):164-75. PubMed ID: 25850094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caring About the Human Operator: Haptic Shared Control for Enhanced User Comfort in Robotic Telemanipulation.
    Rahal R; Matarese G; Gabiccini M; Artoni A; Prattichizzo D; Giordano PR; Pacchierotti C
    IEEE Trans Haptics; 2020; 13(1):197-203. PubMed ID: 31995500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master.
    Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A
    IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic Augmentation for Teleoperation through Virtual Grasping Points.
    Panzirsch M; Balachandran R; Weber B; Ferre M; Artigas J
    IEEE Trans Haptics; 2018; 11(3):400-416. PubMed ID: 29994289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of haptic feedback for the integration of intentions in shared task execution.
    Groten R; Feth D; Klatzky RL; Peer A
    IEEE Trans Haptics; 2013; 6(1):94-105. PubMed ID: 24808271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring neuromuscular control dynamics during car following with continuous haptic feedback.
    Abbink DA; Mulder M; van der Helm FC; Mulder M; Boer ER
    IEEE Trans Syst Man Cybern B Cybern; 2011 Oct; 41(5):1239-49. PubMed ID: 21536522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Skin Deformation Tactile Feedback for Teleoperated Surgical Tasks.
    Quek ZF; Provancher WR; Okamura AM
    IEEE Trans Haptics; 2019; 12(2):102-113. PubMed ID: 30281480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems.
    Nitsch V; Färber B
    IEEE Trans Haptics; 2013; 6(4):387-98. PubMed ID: 24808391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of imperfect automation and individual differences on concurrent performance of military and robotics tasks in a simulated multitasking environment.
    Chen JY; Terrence PI
    Ergonomics; 2009 Aug; 52(8):907-20. PubMed ID: 19629806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task.
    Khurshid RP; Fitter NT; Fedalei EA; Kuchenbecker KJ
    IEEE Trans Haptics; 2017; 10(1):40-53. PubMed ID: 27249838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators.
    Malysz P; Sirouspour S
    IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of haptic feedback when manipulating nonrigid objects.
    Danion F; Diamond JS; Flanagan JR
    J Neurophysiol; 2012 Jan; 107(1):433-41. PubMed ID: 22013237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.
    Kitagawa M; Dokko D; Okamura AM; Yuh DD
    J Thorac Cardiovasc Surg; 2005 Jan; 129(1):151-8. PubMed ID: 15632837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of haptic learning in telemanipulator-assisted surgery.
    Jacobs S; Holzhey D; Strauss G; Burgert O; Falk V
    Surg Laparosc Endosc Percutan Tech; 2007 Oct; 17(5):402-6. PubMed ID: 18049401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction.
    Meli L; Pacchierotti C; Prattichizzo D
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1318-27. PubMed ID: 24658255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.