These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24808268)

  • 1. Intention recognition for dynamic role exchange in haptic collaboration.
    Kucukyilmaz A; Sezgin TM; Basdogan C
    IEEE Trans Haptics; 2013; 6(1):58-68. PubMed ID: 24808268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of haptic feedback for the integration of intentions in shared task execution.
    Groten R; Feth D; Klatzky RL; Peer A
    IEEE Trans Haptics; 2013; 6(1):94-105. PubMed ID: 24808271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems.
    Nitsch V; Färber B
    IEEE Trans Haptics; 2013; 6(4):387-98. PubMed ID: 24808391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the role of haptic feedback in enabling implicit HCI-based bookmarking.
    Pan MK; McGrenere J; Croft EA; MacLean KE
    IEEE Trans Haptics; 2014 Mar; 7(1):24-36. PubMed ID: 24845743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-fidelity bilateral teleoperation systems and the effect of multimodal haptics.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1512-28. PubMed ID: 18179070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision holds a greater share in visuo-haptic object recognition than touch.
    Kassuba T; Klinge C; Hölig C; Röder B; Siebner HR
    Neuroimage; 2013 Jan; 65():59-68. PubMed ID: 23032487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic Communication in Collaborative Virtual Environments.
    Wang J; Chellali A; Cao CG
    Hum Factors; 2016 May; 58(3):496-508. PubMed ID: 26715689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A collaborative wheelchair system.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):161-70. PubMed ID: 18403284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A task-specific analysis of the benefit of haptic shared control during telemanipulation.
    Boessenkool H; Abbink DA; Heemskerk CJ; van der Helm FC; Wildenbeest JG
    IEEE Trans Haptics; 2013; 6(1):2-12. PubMed ID: 24808263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding Waldo: Learning about Users from their Interactions.
    Brown ET; Ottley A; Zhao H; Quan Lin ; Souvenir R; Endert A; Chang R
    IEEE Trans Vis Comput Graph; 2014 Dec; 20(12):1663-72. PubMed ID: 26356880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human performance measures for interactive haptic-audio-visual interfaces.
    Jia D; Bhatti A; Nahavandi S; Horan B
    IEEE Trans Haptics; 2013; 6(1):46-57. PubMed ID: 24808267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task performance evaluation of asymmetric semiautonomous teleoperation of mobile twin-arm robotic manipulators.
    Malysz P; Sirouspour S
    IEEE Trans Haptics; 2013; 6(4):484-95. PubMed ID: 24808400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haptic Guidance on Demand: A Grip-Force Based Scheduling of Guidance Forces.
    Smisek J; Mugge W; Smeets JBJ; van Paassen MM; Schiele A; Smisek J; Mugge W; Smeets JBJ; van Paassen MM; Schiele A; Smeets JBJ; Mugge W; Smisek J; van Paassen MM; Schiele A
    IEEE Trans Haptics; 2018; 11(2):255-266. PubMed ID: 29911982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape Localization and Recognition Using a Magnetorheological-Fluid Haptic Display.
    Rizzo R; Musolino A; Jones LA
    IEEE Trans Haptics; 2018; 11(2):317-321. PubMed ID: 29927742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor-model-based dynamic scaling in human-computer interfaces.
    Muñoz LM; Casals A; Frigola M; Amat J
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):435-47. PubMed ID: 21411399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Psychophysical evaluation of haptic perception under augmentation by a handheld device.
    Wu B; Klatzky R; Lee R; Shivaprabhu V; Galeotti J; Siegel M; Schuman JS; Hollis R; Stetten G
    Hum Factors; 2015 May; 57(3):523-37. PubMed ID: 25875439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haptic Augmentation for Teleoperation through Virtual Grasping Points.
    Panzirsch M; Balachandran R; Weber B; Ferre M; Artigas J
    IEEE Trans Haptics; 2018; 11(3):400-416. PubMed ID: 29994289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grip force control during virtual object interaction: effect of force feedback,accuracy demands, and training.
    Gibo TL; Bastian AJ; Okamura AM
    IEEE Trans Haptics; 2014 Mar; 7(1):37-47. PubMed ID: 24845744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haptic perception of users with low vision and their needs in haptic-incorporated user interfaces.
    Kim HN; Smith-Jackson T; Terpenny J
    Disabil Rehabil Assist Technol; 2014 May; 9(3):195-208. PubMed ID: 24749554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.