These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24808298)
1. A hand-centric classification of human and robot dexterous manipulation. Bullock IM; Ma RR; Dollar AM IEEE Trans Haptics; 2013; 6(2):129-44. PubMed ID: 24808298 [TBL] [Abstract][Full Text] [Related]
2. Classifying human manipulation behavior. Bullock IM; Dollar AM IEEE Int Conf Rehabil Robot; 2011; 2011():5975408. PubMed ID: 22275611 [TBL] [Abstract][Full Text] [Related]
3. An Accessible, Open-Source Dexterity Test: Evaluating the Grasping and Dexterous Manipulation Capabilities of Humans and Robots. Elangovan N; Chang CM; Gao G; Liarokapis M Front Robot AI; 2022; 9():808154. PubMed ID: 35546901 [TBL] [Abstract][Full Text] [Related]
4. Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors' feedback. Jara CA; Pomares J; Candelas FA; Torres F Sensors (Basel); 2014 Jan; 14(1):1787-804. PubMed ID: 24451466 [TBL] [Abstract][Full Text] [Related]
5. Complex manipulation with a simple robotic hand through contact breaking and caging. Bircher WG; Morgan AS; Dollar AM Sci Robot; 2021 May; 6(54):. PubMed ID: 34043534 [TBL] [Abstract][Full Text] [Related]
6. Coordinated control of assistive robotic devices for activities of daily living tasks. Erol D; Sarkar N IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):278-85. PubMed ID: 18586607 [TBL] [Abstract][Full Text] [Related]
7. Performance evaluation of the Personal Mobility and Manipulation Appliance (PerMMA). Wang H; Xu J; Grindle G; Vazquez J; Salatin B; Kelleher A; Ding D; Collins DM; Cooper RA Med Eng Phys; 2013 Nov; 35(11):1613-9. PubMed ID: 23769146 [TBL] [Abstract][Full Text] [Related]
8. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface. Kyrarini M; Zheng Q; Haseeb MA; Graser A IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783 [TBL] [Abstract][Full Text] [Related]
9. Kinematic analysis and dexterity evaluation of upper extremity in activities of daily living. Chen W; Xiong C; Huang X; Sun R; Xiong Y Gait Posture; 2010 Oct; 32(4):475-81. PubMed ID: 20692160 [TBL] [Abstract][Full Text] [Related]
10. Physiological and subjective evaluation of a human-robot object hand-over task. Dehais F; Sisbot EA; Alami R; Causse M Appl Ergon; 2011 Nov; 42(6):785-91. PubMed ID: 21296335 [TBL] [Abstract][Full Text] [Related]
11. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components. Carpinella I; Cattaneo D; Bertoni R; Ferrarin M IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):351-60. PubMed ID: 22623407 [TBL] [Abstract][Full Text] [Related]
12. Smooth leader or sharp follower? Playing the mirror game with a robot. Kashi S; Levy-Tzedek S Restor Neurol Neurosci; 2018; 36(2):147-159. PubMed ID: 29036853 [TBL] [Abstract][Full Text] [Related]
13. Integrated linkage-driven dexterous anthropomorphic robotic hand. Kim U; Jung D; Jeong H; Park J; Jung HM; Cheong J; Choi HR; Do H; Park C Nat Commun; 2021 Dec; 12(1):7177. PubMed ID: 34907178 [TBL] [Abstract][Full Text] [Related]
14. The JamHand: Dexterous Manipulation with Minimal Actuation. Amend J; Lipson H Soft Robot; 2017 Mar; 4(1):70-80. PubMed ID: 29182098 [TBL] [Abstract][Full Text] [Related]
15. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand. Kent BA; Engeberg ED Bioinspir Biomim; 2014 Nov; 9(4):046008. PubMed ID: 25378229 [TBL] [Abstract][Full Text] [Related]
16. Towards Understanding Complex Human Dexterous Manipulation Strategies: Kinematics of Gaiting-based Object Rotations. Hong J; Dollar AM Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4024-4029. PubMed ID: 33018882 [TBL] [Abstract][Full Text] [Related]
17. Normal functional range of motion of the lumbar spine during 15 activities of daily living. Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN J Spinal Disord Tech; 2010 Apr; 23(2):106-12. PubMed ID: 20065869 [TBL] [Abstract][Full Text] [Related]
18. Toward Human-Like Grasp: Functional Grasp by Dexterous Robotic Hand Via Object-Hand Semantic Representation. Zhu T; Wu R; Hang J; Lin X; Sun Y IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12521-12534. PubMed ID: 37134035 [TBL] [Abstract][Full Text] [Related]
19. Conductive education for children with cerebral palsy: effects on hand motor functions relevant to activities of daily living. Blank R; von Kries R; Hesse S; von Voss H Arch Phys Med Rehabil; 2008 Feb; 89(2):251-9. PubMed ID: 18226648 [TBL] [Abstract][Full Text] [Related]
20. Characterizing Continuous Manipulation Families for Dexterous Soft Robot Hands. Sun J; King JP; Pollard NS Front Robot AI; 2021; 8():645290. PubMed ID: 33928130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]