These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24808298)

  • 21. Path Planning for 3-D In-Hand Manipulation of Micro-Objects Using Rotation Decomposition.
    Kumar P; Gauthier M; Dahmouche R
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonprehensile Manipulation for Rapid Object Spinning via Multisensory Learning from Demonstration.
    Shin KJ; Jeon S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning robotic eye-arm-hand coordination from human demonstration: a coupled dynamical systems approach.
    Lukic L; Santos-Victor J; Billard A
    Biol Cybern; 2014 Apr; 108(2):223-48. PubMed ID: 24570352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task.
    Edin BB; Ascari L; Beccai L; Roccella S; Cabibihan JJ; Carrozza MC
    Brain Res Bull; 2008 Apr; 75(6):785-95. PubMed ID: 18394525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Soft object deformation monitoring and learning for model-based robotic hand manipulation.
    Cretu AM; Payeur P; Petriu EM
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):740-53. PubMed ID: 22207640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dimensionality Reduction and Motion Clustering During Activities of Daily Living: Decoupling Hand Location and Orientation.
    Gloumakov Y; Spiers AJ; Dollar AM
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2955-2965. PubMed ID: 33242307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compensation of hand movement for patients by assistant force: relationship between human hand movement and robot arm motion.
    Bai O; Nakamura M; Shibasaki H
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):302-7. PubMed ID: 11561667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of muscle fatigue on grip and load force coordination and performance of manipulation tasks.
    Emge N; Prebeg G; Uygur M; Jaric S
    Neurosci Lett; 2013 Aug; 550():46-50. PubMed ID: 23872090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Journey from human hands to robot hands: biological inspiration of anthropomorphic robotic manipulators.
    Han MS; Harnett CK
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38316033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated movement capture and control platform applied towards autonomous movements of surgical robots.
    Daluja S; Golenberg L; Cao A; Pandya AK; Auner GW; Klein MD
    Stud Health Technol Inform; 2009; 142():62-7. PubMed ID: 19377115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D active workspace of human hand anatomical model.
    Dragulescu D; Perdereau V; Drouin M; Ungureanu L; Menyhardt K
    Biomed Eng Online; 2007 May; 6():15. PubMed ID: 17472756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of daily activities by older adults with dementia: the role of an assistive robot.
    Begum M; Wang R; Huq R; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650405. PubMed ID: 24187224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using a Variable-Friction Robot Hand to Determine Proprioceptive Features for Object Classification During Within-Hand-Manipulation.
    Spiers AJ; Morgan AS; Srinivasan K; Calli B; Dollar AM
    IEEE Trans Haptics; 2020; 13(3):600-610. PubMed ID: 31831440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robust whole-hand spatial manipulation via energy maps with caging, rolling, and sliding.
    Bircher WG; Morgan AS; Dollar AM
    Front Robot AI; 2023; 10():1281188. PubMed ID: 38077457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of hand function during activities of daily living using motion tracking cameras: A systematic review.
    Reissner L; Fischer G; List R; Giovanoli P; Calcagni M
    Proc Inst Mech Eng H; 2019 Aug; 233(8):764-783. PubMed ID: 31132926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impairment and Compensation in Dexterous Upper-Limb Function After Stroke. From the Direct Consequences of Pyramidal Tract Lesions to Behavioral Involvement of Both Upper-Limbs in Daily Activities.
    Roby-Brami A; Jarrassé N; Parry R
    Front Hum Neurosci; 2021; 15():662006. PubMed ID: 34234659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direction of Slip Detection for Adaptive Grasp Force Control with a Dexterous Robotic Hand.
    Abd MA; Gonzalez IJ; Colestock TC; Kent BA; Engeberg ED
    IEEE ASME Int Conf Adv Intell Mechatron; 2018 Jul; 2018():21-27. PubMed ID: 32042473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time course of information representation of macaque AIP neurons in hand manipulation task revealed by information analysis.
    Sakaguchi Y; Ishida F; Shimizu T; Murata A
    J Neurophysiol; 2010 Dec; 104(6):3625-43. PubMed ID: 20943943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole-arm tactile sensing for beneficial and acceptable contact during robotic assistance.
    Grice PM; Killpack MD; Jain A; Vaish S; Hawke J; Kemp CC
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650464. PubMed ID: 24187281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.