These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 24808406)
1. Predicting visual semantic descriptive terms from radiological image data: preliminary results with liver lesions in CT. Depeursinge A; Kurtz C; Beaulieu C; Napel S; Rubin D IEEE Trans Med Imaging; 2014 Aug; 33(8):1669-76. PubMed ID: 24808406 [TBL] [Abstract][Full Text] [Related]
2. On combining image-based and ontological semantic dissimilarities for medical image retrieval applications. Kurtz C; Depeursinge A; Napel S; Beaulieu CF; Rubin DL Med Image Anal; 2014 Oct; 18(7):1082-100. PubMed ID: 25036769 [TBL] [Abstract][Full Text] [Related]
3. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Depeursinge A; Yanagawa M; Leung AN; Rubin DL Med Phys; 2015 Apr; 42(4):2054-63. PubMed ID: 25832095 [TBL] [Abstract][Full Text] [Related]
4. A retrieval-based computer-aided diagnosis system for the characterization of liver lesions in CT scans. Dankerl P; Cavallaro A; Tsymbal A; Costa MJ; Suehling M; Janka R; Uder M; Hammon M Acad Radiol; 2013 Dec; 20(12):1526-34. PubMed ID: 24200479 [TBL] [Abstract][Full Text] [Related]
5. Computerized Prediction of Radiological Observations Based on Quantitative Feature Analysis: Initial Experience in Liver Lesions. Banerjee I; Beaulieu CF; Rubin DL J Digit Imaging; 2017 Aug; 30(4):506-518. PubMed ID: 28639186 [TBL] [Abstract][Full Text] [Related]
6. Localization of liver lesions in abdominal CT imaging: II. Mathematical model observer performance correlates with human observer performance for localization of liver lesions in abdominal CT imaging. Dilger SKN; Leng S; Chen B; Carter RE; Favazza CP; Fletcher JG; McCollough CH; Yu L Phys Med Biol; 2019 May; 64(10):105012. PubMed ID: 30995626 [TBL] [Abstract][Full Text] [Related]
7. Automatic annotation of radiological observations in liver CT images. Gimenez F; Xu J; Liu Y; Liu T; Beaulieu C; Rubin D; Napel S AMIA Annu Symp Proc; 2012; 2012():257-63. PubMed ID: 23304295 [TBL] [Abstract][Full Text] [Related]
8. Automated retrieval of CT images of liver lesions on the basis of image similarity: method and preliminary results. Napel SA; Beaulieu CF; Rodriguez C; Cui J; Xu J; Gupta A; Korenblum D; Greenspan H; Ma Y; Rubin DL Radiology; 2010 Jul; 256(1):243-52. PubMed ID: 20505065 [TBL] [Abstract][Full Text] [Related]
9. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Madero Orozco H; Vergara Villegas OO; Cruz Sánchez VG; Ochoa DomÃnguez Hde J; Nandayapa Alfaro Mde J Biomed Eng Online; 2015 Feb; 14():9. PubMed ID: 25888834 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive descriptor of shape: method and application to content-based retrieval of similar appearing lesions in medical images. Xu J; Faruque J; Beaulieu CF; Rubin D; Napel S J Digit Imaging; 2012 Feb; 25(1):121-8. PubMed ID: 21547518 [TBL] [Abstract][Full Text] [Related]
11. Generate Structured Radiology Report from CT Images Using Image Annotation Techniques: Preliminary Results with Liver CT. Loveymi S; Dezfoulian MH; Mansoorizadeh M J Digit Imaging; 2020 Apr; 33(2):375-390. PubMed ID: 31728804 [TBL] [Abstract][Full Text] [Related]
12. Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity. Altenbernd J; Heusner TA; Ringelstein A; Ladd SC; Forsting M; Antoch G Eur Radiol; 2011 Apr; 21(4):738-43. PubMed ID: 20936520 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions. Roy S; Chi Y; Liu J; Venkatesh SK; Brown MS IEEE Trans Biomed Eng; 2014 Nov; 61(11):2768-78. PubMed ID: 24919041 [TBL] [Abstract][Full Text] [Related]
14. A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations. Kurtz C; Beaulieu CF; Napel S; Rubin DL J Biomed Inform; 2014 Jun; 49():227-44. PubMed ID: 24632078 [TBL] [Abstract][Full Text] [Related]
15. Reduction in dose from CT examinations of liver lesions with a new postprocessing filter: a ROC phantom study. Martinsen AC; Saether HK; Olsen DR; Skaane P; Olerud HM Acta Radiol; 2008 Apr; 49(3):303-9. PubMed ID: 18365819 [TBL] [Abstract][Full Text] [Related]
16. Localization of liver lesions in abdominal CT imaging: I. Correlation of human observer performance between anatomical and uniform backgrounds. Dilger SKN; Yu L; Chen B; Favazza CP; Carter RE; Fletcher JG; McCollough CH; Leng S Phys Med Biol; 2019 May; 64(10):105011. PubMed ID: 30995611 [TBL] [Abstract][Full Text] [Related]
17. Segmentation of hepatic tumor from abdominal CT data using an improved support vector machine framework. Zhou J; Huang W; Xiong W; Chen W; Venkatesh SK Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3347-50. PubMed ID: 24110445 [TBL] [Abstract][Full Text] [Related]
18. Adapting content-based image retrieval techniques for the semantic annotation of medical images. Kumar A; Dyer S; Kim J; Li C; Leong PH; Fulham M; Feng D Comput Med Imaging Graph; 2016 Apr; 49():37-45. PubMed ID: 26890880 [TBL] [Abstract][Full Text] [Related]
19. A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast-enhanced ultrasound. Gatos I; Tsantis S; Spiliopoulos S; Skouroliakou A; Theotokas I; Zoumpoulis P; Hazle JD; Kagadis GC Med Phys; 2015 Jul; 42(7):3948-59. PubMed ID: 26133595 [TBL] [Abstract][Full Text] [Related]
20. Validation of lesion simulations in clinical CT data for anonymized chest and abdominal CT databases. Robins M; Solomon J; Koweek LMH; Christensen J; Samei E Med Phys; 2019 Apr; 46(4):1931-1937. PubMed ID: 30703259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]