These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24808478)

  • 1. Backtrackless walks on a graph.
    Aziz F; Wilson RC; Hancock ER
    IEEE Trans Neural Netw Learn Syst; 2013 Jun; 24(6):977-89. PubMed ID: 24808478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph characterization via Ihara coefficients.
    Ren P; Wilson RC; Hancock ER
    IEEE Trans Neural Netw; 2011 Feb; 22(2):233-45. PubMed ID: 21118772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context-Dependent Random Walk Graph Kernels and Tree Pattern Graph Matching Kernels with Applications to Action Recognition.
    Hu W; Wu B; Wang P; Yuan C; Li Y; Maybank S
    IEEE Trans Image Process; 2018 Jun; ():. PubMed ID: 29994476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning Backtrackless Aligned-Spatial Graph Convolutional Networks for Graph Classification.
    Bai L; Cui L; Jiao Y; Rossi L; Hancock ER
    IEEE Trans Pattern Anal Mach Intell; 2022 Feb; 44(2):783-798. PubMed ID: 32750832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Random walks on graphs for salient object detection in images.
    Gopalakrishnan V; Hu Y; Rajan D
    IEEE Trans Image Process; 2010 Dec; 19(12):3232-42. PubMed ID: 21078566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transduction on Directed Graphs via Absorbing Random Walks.
    De J; Zhang X; Lin F; Cheng L; De J; Xiaowei Zhang ; Feng Lin ; Li Cheng ; De J; Cheng L; Zhang X; Lin F
    IEEE Trans Pattern Anal Mach Intell; 2018 Jul; 40(7):1770-1784. PubMed ID: 28809671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MINDWALC: mining interpretable, discriminative walks for classification of nodes in a knowledge graph.
    Vandewiele G; Steenwinckel B; Turck F; Ongenae F
    BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 4):191. PubMed ID: 33317504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel kernels for error-tolerant graph classification.
    Neuhaus M; Riesen K; Bunke H
    Spat Vis; 2009; 22(5):425-41. PubMed ID: 19814905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph Kernels for Molecular Similarity.
    Rupp M; Schneider G
    Mol Inform; 2010 Apr; 29(4):266-73. PubMed ID: 27463053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive mesh cutting using constrained random walks.
    Zhang J; Zheng J; Cai J
    IEEE Trans Vis Comput Graph; 2011 Mar; 17(3):357-67. PubMed ID: 20421684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph classification by means of Lipschitz embedding.
    Riesen K; Bunke H
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1472-83. PubMed ID: 19447721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolving network representation learning based on random walks.
    Heidari F; Papagelis M
    Appl Netw Sci; 2020; 5(1):18. PubMed ID: 32215318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random walks on networks: cumulative distribution of cover time.
    Zlatanov N; Kocarev L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041102. PubMed ID: 19905268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum algorithm for de novo DNA sequence assembly based on quantum walks on graphs.
    Varsamis GD; Karafyllidis IG; Gilkes KM; Arranz U; Martin-Cuevas R; Calleja G; Wong J; Jessen HC; Dimitrakis P; Kolovos P; Sandaltzopoulos R
    Biosystems; 2023 Nov; 233():105037. PubMed ID: 37734700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern vectors from algebraic graph theory.
    Wilson RC; Hancock ER; Luo B
    IEEE Trans Pattern Anal Mach Intell; 2005 Jul; 27(7):1112-24. PubMed ID: 16013758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual Tracking via Random Walks on Graph Model.
    Li X; Han Z; Wang L; Lu H
    IEEE Trans Cybern; 2016 Sep; 46(9):2144-55. PubMed ID: 26292358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring graph similarity through continuous-time quantum walks and the quantum Jensen-Shannon divergence.
    Rossi L; Torsello A; Hancock ER
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022815. PubMed ID: 25768560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An R-Convolution Graph Kernel Based on Fast Discrete-Time Quantum Walk.
    Zhang Y; Wang L; Wilson RC; Liu K
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):292-303. PubMed ID: 33064655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frustrated random walks: A faster algorithm to evaluate node distances on connected and undirected graphs.
    Li E; Le Z
    Phys Rev E; 2020 Nov; 102(5-1):052135. PubMed ID: 33327202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean first-passage time for random walks in general graphs with a deep trap.
    Lin Y; Julaiti A; Zhang Z
    J Chem Phys; 2012 Sep; 137(12):124104. PubMed ID: 23020321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.