BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2480849)

  • 21. Significance of the hexose monophosphate shunt in experimentally induced cardiac hypertrophy.
    Zimmer HG; Ibel H; Gerlach E
    Basic Res Cardiol; 1980; 75(1):207-13. PubMed ID: 6155904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlation between haemodynamic and metabolic changes in three models of experimental cardiac hypertrophy.
    Zimmer HG
    Eur Heart J; 1984 Dec; 5 Suppl F():171-9. PubMed ID: 6099802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects on left ventricular performance of verapamil and metoprolol singly and together in exercise-induced angina pectoris.
    Silke B; Verma SP; Nelson GI; Hussain M; Forsyth D; Frais MA; Taylor SH
    Am Heart J; 1985 Jun; 109(6):1286-93. PubMed ID: 3890505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of norepinephrine on the oxidative pentose phosphate pathway in the rat heart.
    Zimmer HG; Lankat-Buttgereit B; Kolbeck-Rühmkorff C; Nagano T; Zierhut W
    Circ Res; 1992 Aug; 71(2):451-9. PubMed ID: 1378361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effects of triiodothyronine on rat left and right ventricular function and the influence of metoprolol.
    Zierhut W; Zimmer HG
    J Mol Cell Cardiol; 1989 Jun; 21(6):617-24. PubMed ID: 2476563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A possible role for 5-phosphoribosyl 1-pyrophosphate in the stimulation of uterine purine nucleotide synthesis in response to oestradiol-17 .
    Oliver JM
    Biochem J; 1972 Jul; 128(4):771-7. PubMed ID: 4344697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute haemodynamic effects of felodipine and verapamil in man, singly and with metoprolol.
    Rönn O; Bengtsson B; Edgar B; Raner S
    Drugs; 1985; 29 Suppl 2():16-25. PubMed ID: 3987543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolism and salvage of adenine and hypoxanthine by myocytes isolated from mature rat heart.
    Brown AK; Raeside DL; Bowditch J; Dow JW
    Biochim Biophys Acta; 1985 Jun; 845(3):469-76. PubMed ID: 2408678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of various precursors on the synthesis of adenine and uracil nucleotides in the rat heart (author's transl)].
    Verdetti J; Aussedat J; Rossi A
    J Physiol (Paris); 1980; 76(7):693-8. PubMed ID: 6163848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ribose intervention in the cardiac pentose phosphate pathway is not species-specific.
    Zimmer HG; Ibel H; Suchner U; Schad H
    Science; 1984 Feb; 223(4637):712-4. PubMed ID: 6420889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ribose prevents the propranolol-induced reduction of myocardial adenine nucleotide biosynthesis.
    Zimmer HG; Ibel H; Steinkopff G
    Adv Exp Med Biol; 1984; 165 Pt B():477-81. PubMed ID: 6426268
    [No Abstract]   [Full Text] [Related]  

  • 32. [Incorporation of orotic acid in myocardial uridine nucleotides: effect of isoproterenol and ribose].
    Olivares J; Rossi A
    J Physiol (Paris); 1982 Aug; 78(2):175-8. PubMed ID: 6813456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beta-adrenergic agonists stimulate the oxidative pentose phosphate pathway in the rat heart.
    Zimmer HG; Ibel H; Suchner U
    Circ Res; 1990 Dec; 67(6):1525-34. PubMed ID: 1978808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term effects of ribose on adenine nucleotide metabolism in isoproterenol-stimulated hearts.
    Zimmer HG; Ibel H; Steinkopff G; Koschine H
    Adv Exp Med Biol; 1979; 122B():45-50. PubMed ID: 121039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic recovery following temporary regional myocardial ischemia in the rat.
    Ibel H; Zimmer HG
    J Mol Cell Cardiol; 1986 Oct; 18 Suppl 4():61-5. PubMed ID: 3097331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribose accelerates the repletion of the ATP pool during recovery from reversible ischemia of the rat myocardium.
    Zimmer HG; Ibel H
    J Mol Cell Cardiol; 1984 Sep; 16(9):863-6. PubMed ID: 6436498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribose treatment reduced the infarct size and improved heart function after myocardial infarction in rats.
    Gonzalez GE; Rabald S; Briest W; Gelpi RJ; Seropian I; Zimmer HG; Deten A
    Cell Physiol Biochem; 2009; 24(3-4):211-8. PubMed ID: 19710536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemodynamic responses to paraventricular nucleus disinhibition with bicuculline in conscious rats.
    Martin DS; Haywood JR
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1727-33. PubMed ID: 8238586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduction of the isoproterenol-induced alterations in cardiac adenine nucleotides and morphology by ribose.
    Zimmer HG; Ibel H; Steinkopff G; Korb G
    Science; 1980 Jan; 207(4428):319-21. PubMed ID: 7350664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective beta(1)-blockade improves cardiac bioenergetics and function and decreases neuroendocrine activation in rats during early postinfarct remodeling.
    Omerovic E; Bollano E; Mobini R; Madhu B; Kujacic V; Soussi B; Hjalmarson A; Waagstein F
    Biochem Biophys Res Commun; 2001 Feb; 281(2):491-8. PubMed ID: 11181074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.